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ABSTRACT

This paper investigates usefulness of the global rhythm metrics (such as 
%V, ΔC, PVI, Varco, etc.), introduced by Ramus et al. (1999), Grabe and 
Low (2002) and others, for speaker identification purposes. In our sam-
ple of three Czech female speakers, these features failed to capture the 
inter-speaker differences satisfactorily. They are furthermore put in com-
parison with a local articulation rate (LAR) measure (Volín, 2009), which 
is shown to be capable of capturing phrase-final lengthening differences 
between all speakers.

Key words: phrase-final lengthening, rhythm metrics, timing, speaker 
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1. Introduction

The rhythm of speech is a complex phenomenon that has yet to be fully understood 
and satisfactorily described. There is a number of different approaches to this issue – 
among the most influential are coupled neural oscillators modelling (pursued in Šimko 
and Cummins, 2010; Large et al., 2010; etc.), articulatory gesture modelling (e.g. Saltz-
man and Munhall, 1989; Saltzman et al., 2008, or Gafos and Goldstein, 2012) and the 
somewhat simpler rhythmic or temporal metrics (Ramus et al., 1999; Low et al., 2000; 
Grabe and Low, 2002; Asu and Nolan, 2006; Dellwo, 2006, or Arvaniti, 2009 and 2012).

The modelling approaches will not be pursued here for a number of reasons. Their 
top-down attitude sooner or later encounters the problem of data fitting, where unwieldy 
natural speech clashes with the elegance of the model. Building such models requires 
a priori knowledge or hypotheses – and since there is not enough data on Czech to for-
mulate such hypotheses, it seems reasonable to employ an inverse approach and first look 
into the available material for possible generalizations.

The rhythm metrics are much more tempting – they are easy to extract from the mate-
rial and to employ for a new language. They evolved from repeated attempts to quantify 
the infamous stress-timing vs syllable-timing language distinction (first formulated by 
Pike, 1945) and have been used – with varying rates of success – for a number of different 
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problems since then (dialect discrimination, speech impairment quantification, speaker 
recognition, etc.).

Before we turn to the details, it should be pointed out that none of these approaches 
actually describe speech rhythm as a whole. In some way or another, all of them employ 
information about the timing of speech events only. But there is much more to rhythm 
than just temporal structuring and duration of speech sounds: we have to consider 
prosodic information, such as stress or F0 changes, and its influence on perception of 
duration (see for example Cumming, 2001), issues of neurological processing (e.g. the 
emergence of subjective rhythm, as in Fraisse, 1982), etc. The number of factors influenc-
ing rhythm of speech and its production and perception is indeed vast.

Therefore, when attempting to describe or objectively quantify speech rhythm, there 
are sacrifices to be made. As there is no holistic theory of rhythm to date, the logical thing 
is to come at this complex problem from simpler points of view – in this case, we examine 
timing, and more specifically, the individuality of timing of different speakers.

The rhythm metrics (and the word “rhythm” being used extremely reluctantly here 
and purely out of tradition) offer us a way to globally quantify certain aspects of speech 
segments duration. Although they have originally been used for language classification, 
many researchers have reported certain degree of speaker-dependence (e.g. Ramus, 2002; 
Asu and Nolan, 2006; White and Mattys, 2007; Dellwo and Koreman, 2008, or Arvaniti, 
2009) at least for some of them. The metrics describe the variability of vocalic and con-
sonantal intervals, which can be expected to vary from speaker to speaker, if they treat 
the durations of segments differently.

The main question posed in the first part of the experiment is to what extent are these 
metrics dependent on the individuality of the speaker and whether they are able to dif-
ferentiate between speakers of the same language.

Nevertheless, caution is needed in interpreting these metrics linguistically. A lot of 
factors can play a role in the variability of vocalic and consonantal intervals. For example, 
it has been shown on experiments with impaired speech (Lowit, 2012) that very different 
underlying causes can result in similar scores of rhythm metrics.

The convenient advantage and at the same time the greatest constraint of these met-
rics is their globality. They describe global temporal characteristics of a given utterance, 
although the timing differences of speakers might occur only locally. In the second part 
of the experiment, we will therefore look at one particular phenomenon that may exert a 
considerable influence on the duration of segments – phrase-final lengthening (see also 
Arvaniti, 2009). If the speakers were to differ in the extent of their final lengthening, it is 
not unreasonable to suppose that it will show in differences between the timing metrics.

However, if we want to look directly at local timing changes, the global parameters 
do not seem to be a sensible choice. To use a global metric on a local phenomenon 
means to severely reduce the information value of the metric which needs some minimal 
amount of data to be reliable. A local temporal metric called LAR (Local Articulation 
Rate, developed by Volín, 2009) was therefore applied to distinguish speakers according 
to their phrase-final lengthening. The localized approach to speech timing as opposed to 
the global metrics has many advantages and will be further discussed in the final section 
of this paper.
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2. Method

For both experiments, six recordings of three female professional speakers (two 
recordings from each speaker) from the Prague Phonetic Corpus (Skarnitzl, 2010) 
were used. The average total length of utterances from one speaker was 6.5 minutes and 
934 words. The texts differed in content but not in style (newsreading).

The recordings were segmented to breath-groups, automatically labelled with the 
Prague Labeller tool (Pollák et al., 2007) in Praat (Boersma and Weenink, 2012) and 
manually corrected by the author using guidelines from Machač and Skarnitzl (2009). 
Vocalic and consonantal intervals were labelled using a Praat script, syllabic consonants 
were treated as vowels for this purpose. Consonantal groups across word boundaries 
were treated as one C interval. All intervals containing pauses or dysfluencies were dis-
regarded.

The following parameters were extracted:
• %V: the proportion of vocalic intervals within a breath-group,
 i.e., %V = (dvt/dt) × 100, 
 where dvt is the total duration of vocalic intervals within a breath-group and dt the total 

duration of the breath-group
• ΔV/ΔC: the standard deviation of the duration of vocalic/consonantal intervals within 

a breath-group,
 
 i.e.,                                 , 

 where dv is the duration of one vocalic interval and dvavg is the mean duration of 
vocalic intervals in the breath-group; similarly for ΔC

• VarcoV/VarcoC: ΔV or ΔC normalised by average vocalic/consonantal duration with-
in a breath-group,

 i.e., VarcoV = ΔV/dvavg, 
 similarly for VarcoC
•	 rPVI-V/rPVI-C: raw Pairwise Variability Indices for vocalic/consonantal intervals,
 
 i.e., rPVI = [∑k=1|dk–dk+1| /(n–1)] n–1 ,
 
 where dk is the duration of k-th interval and n the number of respective intervals
•	 nPVI-V/nPVI-C: normalised Pairwise Variability Indices for vocalic/consonantal 

intervals,
 
 i.e., nPVI = 100 × [∑k=1|(dk+dk+1)/2| /(n–1)] n–1 dk–dk+1 ,
 
•	 LAR: local articulation rate values; see below

For the extraction of LAR values, midpoints of each vocalic interval had to be labelled –  
the inverse value of the distance of two successive midpoints (durpk-pk) then constitutes 
one LAR value:

∆V=    ∑(dv-dvavg)2

                n-1

LAR=     1
           durpk–pk
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The inverse value has the effect of converting distance measure to articulation rate 
measure, therefore the higher LAR value, the higher articulation rate in syllables per 
seconds.

For analysing the phrase-final lengthening, final sections of breath-groups in the 
length of six syllables were chosen. Only those breath-groups were selected which exhib-
ited a falling nuclear tone and whose last intonation phrase was longer than six syllables 
(a prosodic boundary within this section would interfere with the final lengthening and 
the breath-groups would not be comparable). The last six LAR values were measured and 
smoothed using the 3-point moving average method. A linear regression coefficient of 
each of the breath-group endings was computed using the method of least squares, rep-
resenting the overall gradient of rising or falling of the LAR values. The moving average 
smoothing served to diminish the drops in LAR caused mainly by consonantal clusters.

As the texts of each recording did not have identical content, a control measure was 
employed to quantify the effect of syllable structure on all the metrics. A simple pro-
portion of the number of individual consonants and vowels for each breath-group (C/V 
proportion) and its correlation with the measures was computed. Any breath-groups 
showing this proportion higher or lower than 2 standard deviations from the overall 
average were discarded (this was mainly the case of breath-groups containing a foreign 
proper name).

Another investigated factor was the percentual representation of phonologically long 
vowels in the text, which also could lead to differences in the metrics without showing 
any speaker idiosyncrasies.

After preliminary analyses, some additional post-hoc modifications were made: 5% 
of the longest and shortest breath-groups in terms of total duration of the articulation 
were removed (such as the greetings at the beginning of each recording) as they seemed 
to introduce additional variability which obscured the rest of the data.

All extracted measures were compared pairwise (each speaker with each other and the 
two recordings of one speaker) using t-tests for uncorrelated samples with homogeneous 
variance; correlations were computed using Pearson’s or Spearman’s coefficients.

3. Results

3.1 Global rhythm metrics

Although the metrics and the C/V proportions were to some extent correlated (which 
was to be expected), there was no statistically significant difference between the C/V 
proportions of the data from each speaker. This led us to conclude that the recordings 
are phonotactically representative and should not introduce any artifacts into the data. 

Furthermore, there was no significant correlation between the percentual proportion 
of long vowels and the values of the vocalic measures, so the presence of long vowels does 
not affect them to a great extent.

The results of the between- and intra-speaker analyses for all nine parameters is shown 
in Table 1 below.
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Table 1. Statistical significance of the results of pairwise t-tests comparing global rhythmic values for 
each breath-group. The first three columns show inter-speaker differences, the second three intra-
speaker. A difference of p < 0.05 is marked by asterisk.

Speaker/Measure F1/F2 F2/F3 F1/F3 F1a/F1b F2a/F2b F3a/F3b

%V * *

ΔV * * * *

VarcoV *

rPVI-V * *

nPVI-V

ΔC

VarcoC *

rPVI-C *

nPVI-C * *

In general, the vocalic measures performed better than consonantal, but none of the 
timing metrics was able to discriminate all three speakers from each other. In addition, 
some of them (especially ΔV) even discriminated between two recordings of the same 
speaker, which is unwanted in this case. VarcoV, nPVI-V, ΔC and rPVI-C did not show 
any inter-speaker differences at all.

We also tried to improve the results by combining the more promising measures (%V, 
rPVI-V and nPVI-C) with each other in two-dimensional scatterplots, but this still did 
not reveal any significant trends. An example of combining %V with nPVI-C is shown 
in the figure below.

Figure 1. Values of %V and nPVI-C for all three speakers. Each point represents the value of one breath-
group.
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3.2 LAR values

Turning now to the LAR regression values representing the rate of final lengthening, 
the picture turns out to be more encouraging.

In Figures 2a–b, there are two examples of what a smoothed LAR contour looks like. 
Both represent the last six syllables of a breath-group ending with a falling nuclear tone. 
There are only 4 LAR values, since the 3-point smoothing averages out two of the values. 
Figure 2a shows a distinct final lengthening (the lower LAR values the bigger distance 
between two syllable nuclei), Figure 2b on the other hand shows acceleration. Both 
tendencies are captured by the linear regression coefficient – a negative value of the coef-
ficient equals slowing down, a positive number indicates speeding up.

Figure 3 shows overall average values and standard deviations of LAR linear regression 
coefficients for the three speakers, in Figure 4 they are broken up to individual record-
ings.

It is evident from Figure 3 that all speakers in general use lengthening of vowels at the 
end of utterances – the averages of the coefficients are negative. Speaker F1 lengthens 
almost exclusively all of her breath-group endings, speaker F2 approximately half of the 
cases. This is exactly the kind of speaker-specific behaviour we have been looking for. 
Although there are considerable intra-speaker variations, the speakers within each pair 
are significantly different from each other – the results of t-tests are shown in Table 2 
below.

Moreover, the regression coefficient of LAR did not differentiate the two recordings 
from one speaker (see Figure 4), which is favourable in speaker identification cases, 
where intra-speaker variability can be a non-trivial problem.

Figure 2a–b. Individual LAR contours for the last six syllables of two selected utterances. LAR values 
are smoothed using a 3-point moving average. Straight line represents the linear regression line, with its 
coefficient shown above it.
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Table 2. Results of t-tests comparing all pairs of speakers.

F1/F2 F2/F3 F1/F3

t (65) = 4.16 t (72) = 2.14 t (61) = 2.3

p < 0.05 p < 0.05 p < 0.05
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4. Conclusion and discussion

Considering the results, a simple conclusion can be drawn: the local LAR measure is 
superior in capturing inter-speaker differences in our material to the global timing met-
rics. Although the sample of speakers is very small to generalize, we believe that looking 
at local temporal changes may be more useful than trying to cluster all the information 
about timing in an utterance into one number. It seems that the global measures are 
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Figure 3. Mean values and standard deviations of linear regression coefficients of the 3-point moving 
average LAR values for all three speakers. Whiskers denote 0.95 confidence interval.
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Figure 4. Mean values and standard deviations of linear regression coefficients of the 3-point moving 
average LAR values for all six recordings. Whiskers denote 0.95 confidence interval.



40

indeed more apt to distinguish languages from one another, as the local speaker-specific 
differences integrate into fairly similar results.

As a sidenote, it is interesting to point out that the average values of %V for all three 
speakers cluster around 40, which would place Czech next to German with very similar 
results (Arvaniti, 2012). Comparing the results of global metrics with other languages 
as reported in the literature, it is remarkable that according to our (albeit sparse) data, 
Czech has very low values of all other vocalic measures, which is surprising, since one 
would expect a language with vowel quantity contrast to have higher variability in vow-
els. This suggests that the timing metrics are unable to capture the contrast (for similar 
results with Hungarian, Finnish and Turkish see also Papp, 2012) and, furthermore, that 
Czech short and long vowels do not differ that significantly in duration – this notion is 
supported by Skarnitzl and Volín (2012) who found that the proportion of long to short 
vowel durations in Czech ranges only from 1.29 to 1.79 and is even smaller in nonfinal 
positions.

It could be also interesting to turn the attention to the question of perceptual saliency 
of the global metrics. As Dellwo pointed out (Dellwo et al., 2012), it could well be the 
case that utterances with very different temporal values might not be that different per-
ceptually. If so, then the metrics are not able to tell us anything about how the human 
brain distinguishes speakers. But, on the other hand, if people are not aware of such 
information, it suggests that it cannot be intentionally manipulated and therefore could 
be useful as a forensic feature.

In further research we plan to continue investigating local measures and look directly 
at temporal trajectories of utterances and their speaker-specific characteristics. The aim 
is to find language-specific timing patterns for Czech and see how speakers express their 
individual speech habits in comparison with the average temporal behaviour. Some pre-
liminary results can be found in Volín and Weingartová (2012).

However, the intra-speaker variability remains an open question. Examination of 
more recordings from one speaker could shed light on robustness of the local timing 
metrics and on consistency of the timing patterns produced by one speaker.

Another logical step will be to move forward from read speech to more spontaneous 
speech, to test whether the hypotheses hold. A great advantage of measuring timing, 
especially when we have forensic uses in mind, is its robustness to noise and to intention-
al disguise of the speaker. We therefore believe that, once better understood, temporal 
patterns of speech may become a very useful tool in forensic speaker identification.

Also, a combined approach that extends the scope to other prosodic domains (such 
as F0 contours or speech energy dynamics, as it is done by Adami et al., 2007) and their 
timing relationships could considerably increase the success rate of speaker recognition.
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RYTMICKÉ UKAZATELE PRO ROZPOZNÁVÁNÍ MLUVČÍHO V ČEŠTINĚ

Resumé

Článek se zabývá využitím globálních rytmických ukazatelů pro identifikaci mluvčího. Tyto metriky 
(%V, ΔC, PVI, Varco, atd.) zavedené ve studiích Ramuse et al. (1999), Grabové a Lowové (2002) a dalších 
nicméně ve vzorku tří českých mluvčích ženského pohlaví nedokázaly uspokojivě zachytit rozdíly. Jsou 
tedy dále srovnávány s lokálním popisem tempa (s pomocí proměnné LAR, viz Volín, 2009), zaměřeným 
na závěrové zpomalování na koncích promluvových úseků. Tento lokální popis byl již schopen zachytit 
rozdíly mezi mluvčími v míře závěrového zpomalování.


