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ABSTRACT

RNA	silencing	denotes	sequence-specific	repression	mediated	by	small	RNAs.	In	vertebrates,	there	are	two	closely	
related pathways, which share several protein factors: RNA interference (RNAi) and microRNA (miRNA) path-
way.	The	miRNA	pathway	regulates	endogenous	protein-coding	gene	expression	and	has	been	implicated	in	many	
biological processes. RNAi generally serves as a form of innate immunity targeting viruses and mobile elements. 
This	text	reviews	miRNA	and	RNAi	pathways	in	birds.	Although	the	available	literature	on	RNA	silencing	in	
birds is very limited, many features can be deduced from the genomic data in the public domain. miRNA, RNAi 
and	other	dsRNA-responding	pathways	in	birds	appear	very	much	like	those	in	mammals,	important	bird-specific	
features	of	RNA	silencing	pathways	are	yet	to	be	identified.	The	miRNA	pathway	is	likely	the	dominant	small	
RNA pathway while the existence and functionality of endogenous RNAi remains unclear. Some variations may 
be present in the main bird antiviral interferon system.

Introduction

Birds (Aves)	belong	together	with	mammals	and	fishes	to	the	group	Craniata within chor-
dates. Some of the birds are of high economic importance (food industry) or medical rel-
evance (viral vectors causing zoonoses). Bird ancestors branched of mammalian ancestors 
over 300 MYA when the synapsid lineage leading to mammals branched of the sauropsid 
lineage	leading	to	dinosaurs	and	birds.	There	are	~9000	extant	bird	species	(Margulis	and	
Schwartz, 1998). During their evolution, birds evolved numerous physiological adaptations 
in which they differ from mammals, including feathers, shelled eggs with external devel-
opment, or different sex chromosome system, to name a few. At the same time, they are 
the closest mammal-related group covered in this series, in terms of synteny and sequence 
similarity.	This	is	useful	for	assessing	features	of	dsRNA	and	miRNA	pathways	because	
the available literature on RNA silencing in birds is very limited. However, many features 
can be deduced from the genomic data in the public domain. miRNA, RNAi and other 
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dsRNA-responding pathways in birds are very much like those in mammals and the literature 
does	not	report	an	important	bird-specific	feature	in	RNA	silencing	pathways.	Since	mech-
anistical	principles	of	vertebrate	miRNA	and	RNAi	pathways	were	introduced	in	the	first	
two reviews of this series (Svoboda, 2019a, b) and in further detail elsewhere (Bartel, 2018; 
Svoboda, 2014), I will focus here directly on features of these pathways described for birds.

Dicer

According	to	the	complete	genome	sequences	of	chicken	and	Zebra	Finch,	birds	have	one	
Dicer protein. Chicken Dicer has been assigned to the chromosome 5 according to the radi-
ation	hybrid	mapping	(Tian	et	al.,	2007)	which	is	in	agreement	with	the	current	chicken	
genome	map.	There	is	no	detailed	analysis	of	avian	Dicer	specificity	and	activity,	which	have	
to be inferred indirectly from other results. Chicken Dicer can process both, long dsRNA and 
miRNA precursors, as evidenced by induction of RNAi with long dsRNA (Mauti et al., 2008; 
Pekarik et al., 2003) and hundreds of avian miRNAs in the miRBase.
The	common	Dicer	product	size	seems	to	be	21–23nt	with	a	typical	size	of	22nt.	This	

information	can	be	inferred	from	available	miRBase	data	(Fig.	1).	Thus,	the	avian	Dicer	
produces small RNAs with the same sizes as the mammalian Dicer (Fig. 1). Another pos-
sible	substrate	of	Dicer	in	birds	might	be	snoRNAs,	although	the	biological	significance	of	
this	observation	remains	unclear	(Taft	et	al.,	2009).

It is unclear if there are functionally different avian Dicer isoforms as is the case in 
murine	oocytes	and	somatic	cells	(Flemr	et	al.,	2013).	There	is	one	report	of	different	Dicer	
splice variant in goose (Anser cygnoides) where one variant lacks a linker between DEAD 
box	and	helicase	C	domains	at	the	N-terminus	(gDicer-b)	(Hu	et	al.,	2014).	The	shorter	iso-
form	gDicer-b	is	present	in	multiple	tissues,	however	its	functional	significance	is	unclear.	
The	truncation	is	found	in	the	N-terminus,	which	is	associated	with	substrate	selectivity	and	
efficient	processing.	Therefore,	one	might	speculate	about	some	functional	divergence	in	
substrate processing between the two isoforms. However, there is no experimental evidence 
at	the	moment.	The	only	available	data,	so	far,	concern	cloning	of	the	short	isoform	and	
expression	analysis	of	several	tissues	and	follicular	stages	by	RT-PCR	(Hu	et	al.,	2014).

dsRBPs

dsRBP binding partners of Dicer have not been studied, so far. Interestingly, the chick-
en	genome	contains	a	dsRBP,	which	is	related	to	TARBP2	and	PACT,	suggesting	a	more	
ancestral vertebrate state and a reduced crosstalk between RNAi and the interferon pathway.

Argonaute proteins

Argonaute	family	proteins	are	effectors	of	RNA	silencing	mechanisms.	They	are	divided	
into two subfamilies: AGO proteins, which accommodate miRNAs and siRNAs, and PIWI 
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proteins, which accommodate piRNAs. Avian AGO proteins have not been characterized 
in a published report but public chicken genome data show that the setup is the same as 
in mammals: Studies in chicken revealed four AGO proteins, where AGO1, 3, and 4 are 
encoded within one locus on chromosome 23 and AGO2 is encoded separately on chro-
mosome	2.	This	arrangement	appears	to	be	shared	within	mammals	and	birds	(Zhou	et	al.,	
2010). Additional information about avian AGOs can be inferred indirectly from the exist-
ence of functional RNAi and miRNA pathways (discussed below), which implies that at 
least	one	AGO	protein	is	a	“slicer”	(presumably	AGO2,	given	its	conserved	role	as	a	slicer	
from Drosophila to mammals). Avian AGO proteins can also mediate post-transcriptional 
silencing guided by imperfectly base paired miRNAs.

In addition, there were two publications found, which mention avian PIWI proteins, 
which primarily control genome integrity in the germline and are not within the scope of 
this report (Kim et al., 2012; Lim et al., 2013). 

Other factors

Birds have additional proteins involved in other dsRNA responses, which are either asso-
ciated with adenosine deamination (Herbert et al., 1995) or interferon response. Interferon 
response factors, which recognize some form of dsRNA and are also found in mammals, 
include MDA5 (Hayashi et al., 2014; Lee et al., 2012, 2014), RIG-I (Chen et al., 2015; Li 
et al., 2014a; Xu et al., 2015), and PKR (Gonzalez-Lopez et al., 2003; Lostale-Seijo et al., 
2016;	Zhang	et	al.,	2014).	Interestingly,	chicken	lack	the	RHA/DHX9	homolog	(Sato	et	al.,	
2015).	The	antiviral	response	to	dsRNA	will	be	discussed	further	below.

miRNA pathway

According	to	miRBase	(Kozomara	and	Griffiths-Jones,	2014),	bird	genomes	encode	hun-
dreds	of	miRNAs	(Table	1)	During	the	systematic	literature	review,	miRNA-related	pub-
lications lacking a mechanistic molecular insight into the miRNA pathway were the most 
common	class	of	annotated	publications	for	birds	(~50%	of	all	selected	publications).	These	
publications fall into four basic categories:
a) annotations of novel miRNAs, including high-throughput expression analyses (for exam-
ple	(Godnic	et	al.,	2013;	Luo	et	al.,	2012;	Taft	et	al.,	2009)	and	many	others).	This	
category	also	includes	the	original	chicken	and	Zebra	Finch	genome	annotation	papers	
(International Chicken Genome Sequencing, 2004; Warren et al., 2010).

b) studies of miRNAs in different biological contexts, including reproduction (Lee et al., 
2015; Lee et al., 2011), skeletomuscular apparatus (Chen et al., 2009a), bird song phys-
iology (Gunaratne et al., 2011), growth/weight gain (Li et al., 2013), and many others; 
their comprehensive listing would be beyond the scope of this report.

c) studies of relationship between miRNAs and the immune system, especially antivi-
ral – these will be discussed further below in the section 3.1.2.7. Other dsRNA response 
pathways
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d) false positives of the search- reports describing mRNA knock-down through short hair-
pin	RNAs	adopting	miRNA-like	appearance.	There	is	a	series	of	nearly	identical	method-
ological papers, apparently published twice in 2006 and 2013, which fall in this category 
(Deng et al., 2015; Lin et al., 2006a; Lin et al., 2006b; Lin and Ying, 2006; Lin et al., 
2013a; Lin et al., 2013b; Lin and Ying, 2013; Ying and Lin, 2009; Ying et al., 2010) and 
several other publications concerning development and adaptations of shRNA systems 
(e.g.	(Andermatt	et	al.,	2014;	Chen	et	al.,	2011;	Das	et	al.,	2006).	These	articles	actually	
belong to the RNAi section below but due to the confusing use of nomenclature, they 
would also fall into the miRNA category.
Taken	together,	essentially	all	miRNA-related	publications	dealt	with	miRNA	annota-

tion,	analysis	of	biological	functions	of	miRNAs,	and	adoption	of	miRNAs	for	artifi	cial	
knock-down systems allowing for suppressing any gene of interest. Avian miRNA-related 
publications	did	not	reveal	any	avian-specifi	c	mechanistic	insight	into	miRNA	biogenesis,	
in which birds would differ from the general consensus for mammals, or other vertebrates 
in	general.	The	complete	list	of	all	miRNA-related	publications	is	available	in	a	library	
accompanying this section.

Figure 1 Avian miRNA lengths
The left graph depicts size distribution of all 994 chicken miRNAs deposited in the miRBase (release 21). 
For comparison, the right graph shows size distribution of 721 high-confi dence murine miRNAs.

Table 1 Bird miRNAs in the miRBase (release 22.1 (Kozomara and Griffi ths-Jones, 2014)):

species [genome annotation] miRNA precursors mature miRNA

Gallus gallus [Gallus-gallus-4.0] 882 1232

Taeniopygia guttata [taeGlu3.2.4] 247  334

RNAi 

Avian RNAi-related literature deals mainly with experimental knock-down of gene expres-
sion, which does not reveal much about the physiological role of RNAi pathway in birds. 
These	studies	cannot	all	be	included	in	the	report	due	to	the	high	number,	but	they	are	
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available in the reference library accompanying this section). What can be inferred from 
those studies is that birds have the complete molecular mechanisms for canonical RNAi 
and	can	efficiently	execute	it.	This	is	evidenced	by	efficient	knock-downs	with	long	dsRNA	
(Mauti et al., 2008; Pekarik et al., 2003). 

Published exogenous RNAi data provide insights into possible routes nucleic acids can 
become biologically active in birds and concern areas of EFSA main interests as various 
forms of RNAi technology (siRNAs or transgenic) were considered a way for preventing 
virulent strain circulation in poultry (O’Neill, 2007) although results of these efforts were 
relatively modest, being typically developed in cultured cells (Hutcheson et al., 2015; Saha-
re et al., 2015; Stewart et al., 2011; Yin et al., 2010). Exogenous RNAi in vivo required 
non-physiological manipulations such as 1) plasmid or siRNA electroporation (Andermatt 
et al., 2014; Baeriswyl et al., 2008; Mauti et al., 2008; Pekarik et al., 2003; Sato et al., 2004; 
Wilson and Stoeckli, 2011, 2012), 2) transfection (Dai et al., 2005; Lin et al., 2006a; Lin 
et al., 2013a; Wei et al., 2015), 3) recombinant virus (Lambeth et al., 2009b), or 4) recom-
binant lentivirus delivery (Chen et al., 2009b; Haesler et al., 2007). Altogether, these data 
suggest that exogenous RNAi would not be achieved by just exposing birds to small RNAs 
or their precursors in the environment or food. 
Regarding	the	endogenous	RNAi,	it	remains	what	its	physiological	role	is.	There	are	

three possible roles for endogenous RNAi: antiviral defense, genome defense against ret-
rotransposons	and	control	of	gene	expression.	These	roles	would	be	associated	with	pro-
duction of viral siRNAs, retrotransposon siRNAs and mRNA-targeting siRNAs in vivo. 
However, an unequivocal evidence for existence of these classes and their function was 
not provided yet.

One report attempted to examine the role of Dicer in retrotransposon repression. It was 
shown that the loss of Dicer in chicken cells does not result in accumulation of chicken 
CR1 retrotransposon while introduction of a human L1 element into cells lacking Dicer 
results in accumulation of L1 transcripts and increased retrotransposition (Lee et al., 2009). 
However,	these	data	are	difficult	to	interpret	as	different	scenarios	could	lead	to	the	same	
observations, especially downstream effects of a perturbed miRNA pathway and chroma-
tin-mediated silencing of CR1.

Other dsRNA response pathways

Chromatin regulation by small RNAs

Two	studies	involving	bird	models	brought	up	a	possible	nuclear	function	of	Dicer	and	its	
link to chromatin regulation, which is of the unsettled issues in vertebrate models. Despite 
a decade of research, there is still no proposed molecular mechanism explaining these phe-
nomena while the literature contains a number of contradicting observations.

Fukagawa et al. produced a conditional loss-of-function Dicer mutant in a chicken-hu-
man	hybrid	DT40	cell	line	that	contains	human	chromosome	21.	The	loss	of	Dicer	resulted	
in cell death and accumulation of premature sister chromatid separation. Furthermore, aber-
rant accumulation of transcripts from human centromeric repeats was also found suggesting 
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loss of heterochromatin at centromeres. While localization of two heterochromatin pro-
teins (Rad21 and BubR1) was abnormal, localization of core centromeric heterochroma-
tin proteins CENP-A and -C was normal (Fukagawa et al., 2004). Although the article 
is highly cited (335 times up to date according to WOS core collection), the molecular 
mechanism of the effect remains elusive. It is possible that the phenomenon is an indirect 
consequence of perturbing the miRNA pathway. Furthermore, the model system is unique 
and human heterochromatin sequences might exhibit unusual behaviour in the chicken 
nuclear environment.

Giles et al. examined a 16 kilobase (kb) heterochromatin domain in the chicken eryth-
roid progenitor cell line 6C2. RNAi-mediated downregulation of the enzyme Dicer result-
ed in increased histone acetylation and transcript levels from the heterochromatin locus 
while compact chromatin structure became more accessible to restriction endonucleases. 
It was also shown that chicken AGO2 homolog binds the 16 kb region in a Dicer-depend-
ent	manner	and	is	necessary	for	a	condensed	chromatin	structure	(Giles	et	al.,	2010).	The	
article has been cited 26 times up to date according to WOS (core collection), yet there 
was no follow up providing any mechanistic explanation of the phenomenon. It is pos-
sible that the observed effects could be an indirect effect of suppression of the miRNA 
pathway or even an experimental artefact. Additional controls and experiments would be 
needed	to	address	these	concerns	and	clarify	inconsistencies	with	other	reports.	Therefore,	
this report should be considered an interesting observation without a clear mechanistic 
explanation.
Taken	together,	small	RNA-mediated	chromatin	changes	in	birds	remain	an	open	ques-

tion. Without knowing the molecular mechanism, especially that of biogenesis of small 
RNAs regulating chromatin and their mode of action, there is simply not enough informa-
tion	for	qualified	conclusions.

Antiviral defense – interferon response and crosstalk with RNA silencing

Many	studies	deal	with	various	aspects	of	viral	infections	in	birds	or	avian	cells.	The	most	
studied model for viral infections in birds is Marek’s disease, which is a consequence of 
a Herpesvirus infection in poultry. Publications linked to Marek’s disease addressed virus 
encoded miRNAs (Coupeau et al., 2012; Luo et al., 2011; Morgan et al., 2008; Muylkens 
et	al.,	2010;	Strassheim	et	al.,	2012;	Xu	et	al.,	2011;	Yao	et	al.,	2008;	Zhao	et	al.,	2011;	
Zhao	et	al.,	2009),	changes	in	host	miRNA	expression	during	infection	(Dinh	et	al.,	2014;	
Han et al., 2016; Lambeth et al., 2009a; Li et al., 2014b; Li et al., 2014c; Lian et al., 2015a; 
Lian	et	al.,	2015b;	Stik	et	al.,	2013;	Tian	et	al.,	2012;	Xu	et	al.,	2010;	Yao	et	al.,	2008),	or	
attempts to block the virus with RNAi (Chen et al., 2009b; Chen et al., 2008; Lambeth et al., 
2009b). A similar set of articles has been found for other studied viruses infecting birds – 
e.g.	avian	influenza	virus	H5N1	and	H9N2,	bursal	disease	virus,	subgroup	J	avian	leucosis	
virus.	The	complete	list	is	available	in	the	library	accompanying	this	section.

Reports concerning host and virus-encoded miRNAs generally represent adaptations 
manipulating	the	miRNA	pathway	for	the	benefit	of	the	pathogen.	At	the	same	time,	these	
articles did not reveal some unique adaptation of the chicken miRNA pathway, which 
would differ from molecular mechanisms and principles described in the previous section. 
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The	last	group	of	articles	reviewed	here	represent	publications	covering	the	interferon	
system, the common antiviral system induced by dsRNA and other RNA species (Kar-
pala et al., 2008; Kint et al., 2015; Lostale-Seijo et al., 2016). Birds generally utilize the 
same antiviral interferon system including its key dsRNA sensing proteins: PKR (Gonza-
lez-Lopez	et	al.,	2003;	Lostale-Seijo	et	al.,	2016;	Zhang	et	al.,	2014),	RIG-I	(Chen	et	al.,	
2015; Li et al., 2014a; Xu et al., 2015), and MDA5 (Hayashi et al., 2014; Lee et al., 2012, 
2014),	2’,5’-OAS	(Lee	et	al.,	2014;	Villanueva	et	al.,	2011).	However,	there	seem	to	be	
some	species-specifi	c	variations.	For	example,	RIG-I	is	found	in	some	birds,	such	as	ducks	
or pigeons (Chen et al., 2015; Xu et al., 2015) but not in chicken, which lack RIG-I and 
the RNA sensing RHA/DHX9 helicase homolog (Sato et al., 2015). Although the lack of 
RIG-I is partially compensated by chicken MDA5 activity (Hayashi et al., 2014; Karpala 
et al., 2011) the absence of RIG-I-like function may contribute to the chicken’s susceptibil-
ity	to	highly	pathogenic	infl	uenza	(Karpala	et	al.,	2011;	Li	et	al.,	2014a).

Adenosine deamination

Birds have also adenosine deaminases that act on RNA (Herbert et al., 1995) but their phys-
iological	signifi	cance	in	birds	is	unknown	at	the	moment.	

Figure 2 Overview of avian pathways 
dsRNA and miRNA pathways in birds are very much similar to the mammalian ones with some minor 
exceptions. Birds have only a single dsRBP homologous to TARBP2, and lack PACT ortholog. 
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Summary

In terms of the mode-of-action of dsRNA and miRNA pathways, birds are closely resem-
bling	mammals	despite	over	300	millions	of	years	of	separate	evolution.	The	molecular	
mechanism of RNAi and miRNA pathways seems to be essentially identical to that of 
mammals	except	of	a	single	dsRBD	instead	of	two	different	ones.	The	significance	of	this	
difference	is	unclear.	The	miRNA	pathway	seems	to	be	the	dominant	small	RNA	pathway	
while the existence and functionality of endogenous RNAi remains unclear. Some varia-
tions were found in the interferon system (lack of RIG-I in chicken), which appears to be 
the main antiviral system in birds.
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