

Fig. I The Nepal Himalaya and its neighbouring regions.

Fig. Ia The gravity anomalies Δg .

Fig. Ib The second derivative Γ_{11} of the disturbing gravitational potential.

Fig. Ic The second derivative Γ_{22} of the disturbing gravitational potential.

Fig. Id The second derivative $\Gamma_{\rm 33}$ of the disturbing gravitational potential.

Fig. le The invariant I_1 .

Fig. If The invariant I_2 .

Fig. Ig The ratio *I* of the invariants I_1 and I_2 .

Fig. Ih The strike angle θ_s for l > 0.3.

Fig. li The strike angle θ_s for l > 0.9.

Fig. Ij The virtual deformations (red – dilatation, blue – compression) of the ellipse of deformation.

Fig. IIa The gravity anomalies Δg .

Fig. IIb The second derivative $\Gamma_{\rm 33}$ of the disturbing gravitational potential.

Fig. IIc The strike angle θ_s for l > 0.3.

Fig. IId The virtual deformations (red - dilatation, blue - compression) of the ellipse of deformation.

Fig. III The broad contact region of north-eastern Africa, south-western Asia and south-eastern Europe.

Fig. Illa The gravity anomalies Δg .

Fig. IIIb The second derivative Γ_{33} of the disturbing gravitational potential.

Fig. Illc The strike angle θ_s for l > 0.3.

Fig. IIId The virtual deformations (red – dilatation, blue – compression) of the ellipse of deformation.

Fig. IV Central Europe with conspicuous contacts between the three extensive orogenetic units: the Eastern Alps, the Bohemian Massif and the Western Carpathians.

Fig. IVa The gravity anomalies Δg .

Fig. IVb The second derivative Γ_{33} of the disturbing gravitational potential.

Fig. IVc The strike angle θ_s for l < 0.3 (looking for flat objects).

Fig. IVd The virtual deformations (red - dilatation, blue - compression) of the ellipse of deformation.

Fig. V The Vredefort impact crater in South Africa.

longitude

Fig. Va The gravity anomalies Δg .

Fig. Vb The second derivative Γ_{33} of the disturbing gravitational potential.

Fig. Vc The strike angle $\theta_{\rm S}$ for l < 0.3 (looking for flat objects).

Fig. Vd The virtual deformations (red – dilatation, blue – compression) of the ellipse of deformation.

Fig. VI The Chicxulub impact crater, Yucatan.

Fig. VIa The gravity anomalies Δg .

Fig. VIb The second derivative Γ_{33} of the disturbing gravitational potential.

Fig. VIc The virtual deformations of the ellipse of deformation (red – dilatation, blue – compression) in the Mexico area and the Caribean (Campech bank).

Fig. VId A detail of the round structure of the Chicxulub crater expressed by the virtual deformations of the ellipse of deformation (red – dilatation, blue – compression).

Fig. VII The Popigai impact crater, Siberia.

Fig. VIIa The gravity anomalies Δg .

74.50 74.00 73.50 73.00 72.50 latitude 72.00 71.50 71.00 70.50 70.00 69.50 69.00 1080 1100 1120 1140 1160 1180 longitude

Fig. VIIc The strike angle $\theta_{\rm S}$ for *l* < 0.3 (looking for flat objects).

Fig. VIIb The second derivative $\Gamma_{\rm 33}$ of the disturbing gravitational potential.

Fig. VIId The virtual deformations (red – dilatation, blue – compression) of the ellipse of deformation.

Fig. VIII The Lake Baikal region.

Fig. VIIIa The gravity anomalies Δg .

Fig. VIIIb The second derivative Γ_{33} of the disturbing gravitational potential.

Fig. IX The area of the Grand Canyon in Arizona. (Part of the Colorado River is shown by red lines).

Fig. IXa The gravity anomalies Δg .

Fig. IXb The second derivative Γ_{33} of the disturbing gravitational potential.

Fig. X The area of the stratovolcanoes Popocatepetl (5426 m, P) and Iztaccihuatl (5230 m, I) in Mexico.

Fig. Xa The gravity anomalies Δg .

Fig. Xb The second derivative $\Gamma_{\rm 33}$ of the disturbing gravitational potential.

Fig. XI Southern parts of the Caspian Sea and its neighbouring areas.

Fig. XIa The gravity anomalies Δg .

Fig. XIb The strike angle θ_s for l < 0.3 (looking for flat objects). Note the belt of vectors oriented to one side crossing the central part of the Caspian Sea.

Fig. XIc The virtual deformations (red – dilatation, blue – compression) of the ellipse of deformation. A clear "belt" going roughly from West to East across the Caspian Sea.

Fig. XII The area of the Ghawar oil fields, Saudi Arabia.

Fig. XIIa The second derivative Γ_{33} of the disturbing gravitational potential.

Fig. XIIb The virtual deformations (red – dilatation, blue – compression) of the ellipse of deformation.

Fig. XIII NCEP-NCAR re-analyses of temperature [°C] at 850 hPa, geopotential height [m] of 500 level and sea level pressure [hPa] in Euro-Atlantic region just before and during the May 2010 event: (a) 14 May 2010 at 18 UTC, (b) 15 May 2010 at 18 UTC, (c) 16 May 2010 at 18 UTC, and (d) 17 May 2010 at 18 UTC.