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ABSTRACT
The purpose of this study is the exploitation of Synthetic Aperture Radar (SAR) satellite data for land cover monitoring. The proper-
ties of the recorded radar data heavily depend on the type of land cover, season and weather conditions. Therefore, it is possible to 
utilize the variability of these factors, in order to develop various techniques and methodologies that can be used for classifying land 
surfaces. In this context, this paper proposes approaches, which include the application of mathematical expressions and applica-
tion of thresholds on multi-temporal data, for recognizing and classifying various types of land cover, on the basis of ERS and Envisat 
C-band SAR backscatter and coherence properties. These can be useful for any kind of contemporary SAR data, such as those of the 
current two Sentinel-1 satellites. Although this study focuses on four main land cover types (urban, mountainous, agricultural-low 
vegetation and forested areas) over specific areas in Europe, the same principles can be extended worldwide, leading to useful 
insights for designing future SAR satellite missions or for establishing guidelines for in-depth studies of specific land cover types.
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1. Introduction

1.1 Background and Scope
A plethora of Space-based Remote Sensing (RS) data 
for almost the entire Earth are nowadays available, 
providing access to different information for a variety 
of users worldwide. Land Cover (LC) classification is 
amongst the most popular applications of such data. 
Nevertheless, the “Achilles heel” of all RS-derived 
information is its accuracy, reliability and the chal-
lenge for their constant increase (Kaoru and Toshiha-
ru 1996).

Land cover classification can be defined as “the 
ordering or arrangement of objects into groups or 
sets on the basis of their relationships” (Sokal 1974). 
Typically, the faster it is performed, the lower clas-
sification accuracy is to be expected (Ackermann 
2011).

The most important factor to be considered when 
choosing a classification approach or designing a clas-
sification system, is the user needs. Variables such as 
scale, resolution and study area also have to be taken 
into account. In general, classification techniques can 
be grouped as supervised or unsupervised, hard or 
soft (fuzzy), per-field, sub-pixel or per-pixel and par-
ametric or non-parametric (Lu and Weng 2007).

Additionally, it is highly advisable that the data, 
format and classification procedures are determined 
in advance. For example, if a single-date image is to 
be used, unlike in a time-series approach, there is no 
need for atmospheric corrections (Song et al. 2001). 
On the other hand, if the study area is rugged or 
mountainous, topographic correction is an important 
aspect to consider (Hale and Rock 2003).

An alternative to the most typically used optical 
(visible and infrared) bands for LC classification is the 
microwave (radar) part of the electromagnetic spec-
trum, which provides a different kind of information 
on the observed objects (Lusch 1999). The two main 
types of microwave RS are a) active and b) passive. In 
the former case, the radar antenna transmits its own 
signal and eventually records part of its return, after 
“reflection” on the ground surface. On the other hand, 
passive radar systems do not send their own signal, 
but only receive and record the microwave radiation 
emitted from the ground objects (Long 2008). 

This paper deals with the active type of radar and 
in particular with Synthetic Aperture Radar (SAR), 
typically used since almost 30 years for the purpos-
es of Earth observation from Space. Just as in optical 
remote sensing, there are several ways of processing 
and classifying SAR images. Nevertheless, a special 
characteristic of SAR is that – unlike optical imaging, 
where the user has several spectral bands available 
for interpretation – typically only one, two or in the 
best case a maximum of four bands (for fully polari-
metric SAR data, which are generally rare) are availa-
ble (Haack et al. 2000).

With a focus on LC classification, the objective 
of this study is to analyze and understand the tem-
poral de-correlation effect of the recorded SAR sig-
nal – commonly known as backscattering, as well as 
the stability of the SAR signal phase – quantified as 
coherence values. Phase coherence is one of the main 
products of SAR interferometry (InSAR) and there are 
several factors that may affect it (Hanssen 2001):
1.  The unknown integer number of phases (2kπ).
2.  The phase component due to topography.
3.  The phase component due to distortion in the 

observation direction of the radar.
4.  The phase component due to surface reference and 

errors of satellite orbit.
5.  The phase component due to atmospheric delay to 

which the signal is subject.
6.  The phase component due to any changes in the 

scattering characteristics of the Earth’s surface 
between two observations.

7.  The phase component due to all kinds of noise, 
such as thermal, the error of images writing or 
interference errors.
With reference to the sixth aforementioned fac-

tors, temporal changes over a ground target may 
occur, owing to geometric (e.g. due to wind) and/or 
dielectric variations (e.g. due to precipitation). This 
has an impact – to a different extent – on many LC 
types observed by a SAR sensor, which include e.g. the 
decrease of coherence magnitude or the increase of 
phase noise (Lavalle 2013). The stability of a SAR tar-
get, as denoted by the absence of backscatter and/or 
coherence change, may also be particularly informa-
tive and helpful for classification purposes (e.g. in the 
case of the built environment).

In this context, this paper proposes approaches for 
recognizing and classifying various types of LC, on the 
basis of SAR backscatter and coherence properties.

The study areas, in each of which the focus is on 
a particular type of terrain (urban, mountainous, agri-
cultural and low vegetation areas, forests), are spread 
across Europe (Fig. 1).

In all cases, Envisat/ASAR Single Look Complex 
(SLC) data have been used, with the exception of 
forested areas, where the use of ERS data has been 
employed. The processing of the SAR data has been 
carried out using the Next ESA SAR Toolbox (NEST) 
and the ENvironment for Visualizing Images (ENVI™) 
software.

In order to process SAR images and classify them, 
there are several steps to be followed. One drawback 
of radar imaging is the lack of many different spec-
tral bands for each acquisition. Nevertheless, alter-
native approaches, based on the inherent properties 
of the SAR signal, can be employed for tackling this 
obstacle. Thus, before proceeding to the descrip-
tion of the methodological approach of this study, 
a short description of relevant SAR characteristics is 
presented.



Land cover monitoring over Europe 209

1.2 Overview of main SAR characteristics
What occurs when the antenna that transmits is also 
the one that receives the resulting single-signal pow-
er (for cases of point targets) is explained by Eq. 1 
(Toomay and Hannen 2004), which denotes the rela-
tionship between the different parameters:

                             , (1)P! =
P!  G!λ!σ
(4π)!R!	
  

	
   where:
Pr = power received (watts), 
σ = target radar cross section square meters (m2), 
Pt = power transmitted (watts), 
G = antenna gain (dimensionless), 
R = radar to object range (m), 
λ = wave length (m).

In Eq. 1, the first part of the fraction
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on the system and along with the second part 
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 ,
which is related to the signal propagation, it can be
determined by calibration procedures. Thus, the 
remaining coefficient (σ) contains the highest level of 
uncertainty and is also the most interesting one for 
the purposes of this study.
In the case of an extended target, such as the area (A) of 
the resolution cell/pixel of the radar, “σ” is represent-
ed by the backscattering coefficient (σΟ), which is the 
average value of the radar reflective area per area unit
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, expressed in m2/m2. As a result, Eq. 1 can be

modified as follows:

                                                    , (2)
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As per the parameter of coherence, consider the sim-
ple geometry shown in Fig. 2, including two radar sen-
sors (SAR1 and SAR2) with a zero baseline, look angle 
(θ), along-track distance (x), across-track distance (y), 
radial distance (r), vertical elevation above the surface 
(z), center of the radar resolution cell (O) and location 
(P) of the resolution cell at an arbitrary coordinate (x, 
y, z). If c is the correlated part of the signal and n the 
uncorrelated noise due to baseline, thermal, rotation, 
temporal and other unknown factors, then the mea-
sure for the calculation of the complex correlation 
coefficient γ (i.e. related to coherence) for radar data 
of the first and second acquisition (s1 and s2) is:

                                      , (3)
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where s1 = c + n1 and s2 = c + n2 (s* represents the 
complex conjugate).

The main components contributing to the total 
decorrelation are: 1) thermal (γthermal or γSNR), 2) spatial 
(γspatial or γproc) and 3) temporal decorrelation (γtemp). 

Fig. 1 Study areas across Europe (Geology.com 2016).
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The relationship between γthermal and Signal to Noise 
Ratio (SNR) is (Wei and Sandwell 2010; Zebker and 
Villasenor 1992):

                                                                          , (4)
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Zebker and Villasenor (1992), give the Gaussian dis-
tributed temporal de-correlation equation:
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, which introduces another 
type of correlation, due to the rotation of the target in 
relation to the radar look direction:
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   where dφ = φ1 – φ2 is the distance after the small 

rotation.

Fig. 2 Resolution cell and imaging geometry of repeat-pass radar 
interferometer with zero spatial baseline. The P point moves into P’ 
between the acquisitions, the displacement of P and P′along y and z 
results in a phase offset that depends on the look angle θ (Lavalle et 
al. 2012). 

Many parameters appear in the various situa-
tions, when researchers attach different notability to 
these components, such as Santoro et al. (2007), by 
decomposing the γspatial to γsurface and γvolume, because two 
images taken from different angles are being used. 
Furthermore, Siqueira et al. (2014), in order to be 
able to study flora through interferometry, calculates  
γobs (observation) as,
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γ!"#(!"#$%&) =
γ!"#

γ!"#γ!"#$%#&γ!"#$
= f(h!)	
  

	
  
	
  
	
  
h! = f!!(γ!"#)	
  and	
  γ!"# ≤ sin c (!!!!

!
)	
  

	
  
	
  
	
  

ρ =
Ε S!S!∗

E S! ! E S! !
	
  

	
  
	
  
	
  
	
  

ρ!"# =
S! m,n!

!!! S!∗ m,n!
!!!

S! m,n !!
!!!

!
!!! S! m,n !!

!!!
!
!!!

=
s!s!∗

s!s!∗ s!s!∗
	
  

	
  
	
  
	
  

𝜌𝜌!"# 	
  
	
  
	
  
	
  

where 

	
  
γ!"#(!"#$%&) =

γ!"#
γ!"#γ!"#$%#&γ!"#$

= f(h!)	
  

	
  
	
  
	
  
h! = f!!(γ!"#)	
  and	
  γ!"# ≤ sin c (!!!!

!
)	
  

	
  
	
  
	
  

ρ =
Ε S!S!∗

E S! ! E S! !
	
  

	
  
	
  
	
  
	
  

ρ!"# =
S! m,n!

!!! S!∗ m,n!
!!!

S! m,n !!
!!!

!
!!! S! m,n !!

!!!
!
!!!

=
s!s!∗

s!s!∗ s!s!∗
	
  

	
  
	
  
	
  

𝜌𝜌!"# 	
  
	
  
	
  
	
  

, while
kz is the vertical wavenumber and hν flora (e.g. tree) height.
An InSAR system requires a pair of images taken from 
two different points of space, called S1 and S2 respec-
tively. These two images must be co-registered and 
range filtered for uncommon parts of the spectra of S1 
and S2, in order to increase the coherence (ρ):

                                               , (8)
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absolute value, * refers to the complex conjugation, 
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 corresponds to the maximum likelihood 
estimator of |ρ|. The calculation of the coherence |ρ| is 
possible for any type of multi-dimensional SAR data, 
as Interferometric Synthetic Aperture Radar (InSAR) 
or Polarimetric Synthetic Aperture Radar (PolSAR) 
(Martinez and Pottier 2005). 

2. Methodology

2.1 Urban Areas
Typically, the built environment and the stable man-
made structures within urban areas are characterized 
by high coherence (no or little change), as a result of 
the preservation of SAR signal phase. On the other 
hand, low coherence due to phase decorrelation may 
correspond to agricultural areas, dense high-growing 
vegetation (forest), layover areas and areas of low 
backscatter (smooth surfaces or steep back-slopes) 
(Barbieri and Lichtenegger 2005).

The selected data were acquired over the city of 
Thessaloniki, Greece, with about 1 million residents 
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in its Larger Urban Zone (LUZ). More than 790 thou-
sands of them are living in the main urban area, which 
covers about 112,000 km2, while the construction 
network and build-up areas are very dense (Fig. 3). 
Elevations in the area range from MSL (Mean Sea Lev-
el) up to 1201 meters (Hellenic Statistical Authority 
2011).

The methodology used for the urban areas refers 
to co-registered images of ascending and descending 
passes. More specifically, the SAR signal stability for 
an urban area is analyzed, by averaging the coherence 
of the two different passes.

Four ascending and six descending ASAR data 
during 2005 were used. Firstly, the methodology 
sequence (Fig. 4) consisted of a separate coregistra-
tion of the ascending and descending datasets, after 
applying precise orbits. Consequently, two different 
coregistered stacks were created – one for ascending 
and one for descending pass – and then the average 
coherence was estimated for each of the two passes. 
The coherence window size was 10 pixels (azimuth) 
× 2 pixels (range).

In order to maximize the coherence differences 
between urban and non-urban areas, a multiplica-
tion process took place in two steps. Initially, after 
studying the relevant histograms and identifying the 
minimum coherence values for each pass, all the pix-
els were multiplied with the same integer number, 
in order to obtain values higher than one. That is, if 
e.g. the minimum coherence was 0.015 then it was 
multiplied by 100, in order to obtain a value higher 
than 1 (0.015 × 100 = 1.5). Subsequently, each result-
ing image was multiplied by itself as many times as 
considered adequate to achieve the desired enhanced 
output. That is, the multiplication power depended on 

Fig. 3 Study area 1: urban environment in Thessaloniki, northern Greece.

Fig. 4 Methodology followed for the identification of urban areas.

the coherence value differences between urban and 
non-urban areas, i.e. the smaller the original differ-
ence the higher the power of multiplication needed 
to maximize it. For better visualization purposes, the 
image contrast was also manipulated accordingly. In 
the next step the two products were orthorectified.

Ultimately, a secondary product was computed, 
i.e. the average coherence from both ascending and 
descending data at a resolution of 20 m × 20 m, which 
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was also used in the creation of an ensemble RGB 
product for recognizing urban areas.

2.2 Mountainous Terrain
For the analysis of mountainous terrain that is cov-
ered by snow or ice, images from Norway and espe-
cially images taken near the area of Hemsedal (Fig. 5) 
have been chosen for backscatter analysis.

In order to increase the reliability of the results, 
data for three years have been incorporated, i.e. from 
2003 to 2005. Taking climatic conditions into account, 
the acquisition dates of these images were separated 
in three periods; a) from January to February b) from 
July to August and c) during May. Both ascending and 
descending passes were used. 

The first period corresponds to winter conditions, 
during which the mountains in the area are covered 
by snow and ice. The second period concerns summer 
conditions, characterized either by high soil moisture 
content (stemming from the melted snow and ice) or 
by the presence of bare rocks. In this respect, relatively 
high backscatter values are expected in the aforemen-
tioned two periods (Lu and Meyer 2002). Regarding 
May, according to the World Weather & Climate Infor-
mation (2014), it is the driest month in the area, hence 
significantly lower backscatter values are to be expected. Fig. 6 Methodology followed over mountainous areas.

Fig. 5 Study area 2: mountainous terrain near Hemsedal, Norway.

In order to distinguish the backscatter differences 
and observe their monthly variances, both descend-
ing and ascending passes were used. Separated into 
semesters and pass type, the images were calibrated, 
resulting in the calculation of actual backscatter val-
ues in db (decibel). Subsequently images were coreg-
istered and orthorectified and statistics were export-
ed for each image category (asceding-descending) 
(Fig. 6). 

The most important element in the analysis is the 
Snow Water Equivalent (SWE), because of the infor-
mation on the differences in the backscatter that it 
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provides (Storvold et al. 2006). A set of experiments 
carried out by using ERS-1 data (5.3 GHz, 23° inci-
dence angle) in the Norwegian mountains, has shown 
that the Snow Covered Area (SCA) could be monitored, 
as – in special conditions – the snow-free terrain gives 
high backscatter. Nevertheless, these conditions are 
very rare and for operational purposes it is better 
not to use the aforementioned incidence angle of ERS 
(Solberg 1993). In most cases the snow-covered ter-
rain gives slightly higher backscatter compared to 
bare ground, but it also depends significantly on the 
incidence angle and on the snow wetness; “semi-wet” 
snow results in slightly reduced backscatter (Malnes 
and Guneriussen 2002). 

2.3 Agricultural And Low Vegetation Areas
In order to take sample images of agricultural and low 
vegetation areas, one such area near Nottingham, UK, 
has been chosen. One reason for this choice lies in the 
fact that in the UK agriculture occupies approximately 
70% or 9.2 million hectares of its territory (BBC 2007).

Based on the image availability from Envisat 
ASAR and Land Cover (LC) maps of 2007 (Morton et 
al. 2011), the area of Central East UK was selected, 
including most of the Midlands and a little of Eastern 

areas. The highest point in these areas is Kinder Scout, 
with 636 meters elevation and an average altitude of 
almost 150 meters (Fig. 7).

Maps of agricultural production of the years 2000 
and 2010 were used (Defra 2006, 2013). Although 
there are no maps available for the period 2007–2009 
(which corresponds to the SAR image dates), it can be 
assumed that there are no significant changes in agri-
cultural production between 2000 and 2010.

The major part of agricultural production consists 
of wheat, barley and maize, followed by oilseed rape 
and potatoes, while sugar beet, potatoes, peas and 
field beans are also being farmed (Defra 2013, UK 
Agriculture 2014). The cultivation and harvesting 
season for the main four products is shown in Table 1.

Tab. 1 The harvesting and cultivation periods for the products 
studied.

Products Harvesting period Cultivation period

Wheat August October

Barley June October

Maize April September

Oilseed rape Late July Late August

Source: UK Agriculture, 2014

Fig. 7 Study area 3: agricultural and low vegetation in the vicinity of Nottingham, UK.
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Different varieties of wheat and barley exist, such 
as vernal or winter varieties, with their own produc-
tion cycles. Cereals constitute the main product of the 
United Kingdom’s crops (Defra 2006), with the most 
popular of them being the spring wheat which makes 
up 95% of the total production, opposed to the 5% of 
the winter wheat’s production (Nabim 2014). 

For this reason, the selected SAR image acquisition 
periods were between May and June, representing 
the backscatter from the products before the harvest. 
Conversely, the images taken between September and 
October correspond to the backscatter of the products 
after the harvest. The analysis focused on the behav-
iour of backscatter values over several years. 

More specifically, from a total of 27 available SLC 
Envisat/ASAR images, 17 were retrieved during the 
period between November 2007 and November 2009. 
From the remaining ten images, five of them refer to 
the months of May and June for the period from 2004 
to 2006, while the remaining five refer to the months 
of September and October of the same years.

All the images were calibrated and terrain cor-
rected, while backscatter statistics were retrieved for 
each of the 17 images. The remaining two sets of 5 
images were stacked, in order to calculate the average 
backscatter for each set.

2.4 Forested Areas
The study area is located between the towns of Kehra 
and Tapa in Estonia (Fig. 8). Although small in extent, 
Estonia has a large part of its area covered with for-
est – 2.3 million hectares – which is 51.5% of the 
mainland territory. The dominant tree species of the 
Estonian forests are Scots pine (covering 32% of the 
forested area), followed by birch species (31%), Nor-
way spruce (19%), grey alder (8.5%) and aspen (5%) 
(Nordic Forest Research 2004).

One of the most important factors that have to be 
taken into account when studying a forested area with 
SAR is the wavelength of the available band. Depend-
ing on the wavelength used, the penetration of the SAR 
signal may vary, similarly to other vegetated or agri-
cultural areas (Fig. 9). Thus the information retrieved 
may be misleading, if not properly interpreted.

For this land cover type nine sets of two images (C 
band and VV polarization) from the tandem mission 
of ERS-1 and ERS-2 were chosen and processed for 
interferometric analysis (coherence estimation and 
evaluation). From the total of nine available ERS tan-
dem pairs originally processed, only four were even-
tually selected for further analysis.

From this set of four pairs, two were acquired 
around the summer period, while the other two were 

Fig. 8 Study area 4: forested area in Estonia.
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acquired during winter. The fact that the images were 
spread during two semesters provided the opportu-
nity to study the area during two extreme conditions. 
These conditions also represent the extremes in 
the trees’ annual life cycle (especially for deciduous 
trees) – being devoid of foliage (winter) and full of 
foliage (summer). 

3. Results and Discussion

3.1 Urban Areas
Concerning the urban versus non-urban areas, an 
attempt to classify them based on coherence, showed 
considerably higher values for the former and lower 
values for the latter, as represented in the final ort-
horectified RGB product (Fig. 10). The higher backs-
catter values of the urban areas are something to be 
expected, as there are many corner reflectors for the 
SAR signal within the built environment.

Furthermore, by having a pair of images or a series 
of images taken over a considerable period of time, 
one can further estimate the construction activity of 
an area.

3.2 Mountainous Areas
In the analysis of this study area it was highlighted 
how the backscatter variation is connected to each 
semester and the related weather conditions. In the 
first semester the mean backscatter value is the high-
est of the year, possibly due to the high volume of 
snow- or ice-covered terrain. On the other hand, in the 
second semester, most of the mountain area is snow-
free, which results in lower backscatter values in the 
area, compared to the winter period.

Finally, in May images, the backscatter has the 
lowest values of the year. By studying the specific 
month, a “snowline” can be identified between the 
highest parts – where there is continuous snow cov-
er – and the lowest parts of the basin – where there 

Fig. 9 Dependence of SAR backscatter of biomass (leaves, branches, trunks) from the radar wavelength (Le Toan 2007; Le Toan et al. 2001).

Fig. 10 RGB image of Thessaloniki area, produced by the average coherence of 4 ascending and 6 descending SAR images (Red: average of 
descending pass; Green: average of ascending pass; Blue: average of both passes).
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is snow-free ground as well (Andersen 1982). Bear-
ing this in mind, experiments in three subsets of the 
average May image were carried out, in order to study 
the backscatter values at three respective altitude 
zones. The results provide some indication on how 
the backscatter decreases progressively, when mov-
ing from the highest part of the mountains to lower 
elevations, but further investigation and more data is 
needed, in order to come to meaningful conclusions.

3.3 Agricultural and Low Vegetation Areas
Regarding the agricultural and low vegetation areas, 
taking into account annual rainfall data, the inter-
pretation of backscatter variation is based on soil 
moisture and roughness variations. When these two 
variables have low values (dry and smooth surface), 
the backscatter is also low. When either of the two 
parameters is characterized by high values (wet and/
or rough surface), the resulting backscatter is high.

Thus the reason why the backscatter in winter is 
high can be attributed to the increased soil moisture. 
During winter months, the agricultural production is 
not fully-grown and most of the SAR signal returns 
directly from the ground, which is also wet, resulting 
in high backscatter values. It ought to be noted that 
this behavior is similar to that of trees; before the sig-
nal returns to the receiver, it can follow different path-
ways, which may thus result in different backscatter 
values.

In more detail, as it can be observed in Fig. 11, from 
March to September, the average image backscatter 
has the lowest values. From November to February, 
the values start to rise.

Fig. 11 Periodicity of the mean backscatter values for the agricultural 
and low vegetation areas.

Additionally, from the two sets of 5 images the typ-
ical backscatter values before and after the harvest 
for the agricultural areas were calculated; the most 
distinct differences can be observed in terms of mean 
values for the May/June (0.1428+/−0.0528) and Sep-
tember/October (0.2447+/−0.0766). These values 
and periodicity can be attributed to the backscatter 
variations of crops rather than urban areas, as shown 
in Fig. 12. 

Taking into consideration the different stages of 
growth for each crop type (Fig. 13), as well as the aver-
age monthly precipitation in the study area (Fig. 14), 
further investigation could be performed. This ought

Fig. 12 Comparison of the mean backscatter values for crops and 
urban areas.

to focus on the backscatter variations, owing to the 
changes in the two main factors affecting the SAR 
signal, i.e. surface roughness and dielectric constant 
(directly related to the water content). Nevertheless, 
this would require extensive in-situ data and an anal-
ysis per crop type, as their cultivation periods differ 
significantly.

Fig. 13 Monthly backscatter with respect to the different stages of 
growth, for each crop type.

Fig. 14 Average monthly precipitation for study area 3 (agricultural 
and low vegetated area).

3.4 Forested Areas
Finally, for the forested areas, the coherence results 
for the two winter datasets, show a concentration of 
the pixel values between 0.4 and 0.7, with a maximum 
accumulation at 0.65 and a mean value of 0.51. On 
the other hand, for the summer image sets, the pixel 
values are concentrated between 0.2 and 0.35 with 
a maximum accumulation at 0.25 and a mean value 
of 0.35. Especially for August and February, great-
er data dispersion was identified, with many pixels 
having values up to 0.7 and down to 0.4 respectively. 
Furthermore, the pixels values from the two sets of 
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coherence were averaged, in order to get the mean 
values for each pixel for each semester.

Subsequently, using the CORINE land cover data-
base (scale of 1 : 100,000) and the processed coher-
ence images, all the relevant classes and their coher-
ence could be identified in a GIS (ArcGIS™) for each 
semester (Table 2).

As regards to the coherence for the forested are-
as (coniferous, mixed and broad-leaved), the results 
show that during summer the values are characteris-
tically lower compared to the other classes. Further-
more, even though coherence increases during winter, 
it has still lower values for the aforementioned forest-
ed areas than in the other classes, but with a wider 
range. Between the different species, low coherence 
results throughout the year are encountered (from 
lowest to highest) over coniferous forests, followed 
by mixed, broad-leaved forest and finally transition-
al woodland shrub. For the different species, lower 
coherence was also associated with higher dispersion.

Tab. 2 Summer and winter coherence for the different classes.

Class Summer 
Coherence

Winter 
Coherence

Inland marshes 0.48–0.64 0.57–0.73

Transitional woodland shrub 0.32–0.67 0.53–0.83

Pastures 0.22–0.51 0.44–0.77

Land occupied by agriculture 0.20–0.66 0.37–0.77

Mixed forest 0.12–0.45 0.22–0.70

Coniferous forest 0.09–0.66 0.14–0.78

Water bodies 0.16–0.49 0.53–0.74

Industrial or commercial units 0.25–0.46 0.32–0.58

Mineral extraction sites 0.45–0.65 0.55–0.79

Discontinuous urban fabric 0.21–0.55 0.35–0.71

Non-irrigated arable land 0.37–0.68 0.55–0.81

Complex cultivation patterns 0.36–0.70 0.45–0.77

Broad-leaved forest 0.20–0.57 0.34–0.74

Natural grassland 0.30–0.50 0.40–0.78

Peat bogs 0.34–0.74 0.44–0.82

Moors and heathland 0.22–0.53 0.49–0.73

Road and rail networks 0.44–0.54 0.58–0.74

4. Conclusions

In this paper, different approaches for land cover mon-
itoring through classification with the use of SAR data 
were tested over Europe. In particular, ERS and Envi-
sat/ASAR datasets were employed in order to iden-
tify urban, mountainous, agricultural/low vegetation 
areas and forests, by exploiting SAR backscatter and 
coherence. The period of SAR observations included 
data from all four seasons, thus covering a variety of 
meteorological conditions, as well as agricultural/
vegetation stages. 

For the urban and non-urban areas an attempt to 
classify them based on coherence, showed great value 
differences between the two aforementioned catego-
ries. For the selected location, images throughout the 
year were used and no deterioration of the results due 
to moisture or rain was observed. On these grounds, 
it can be assumed that this methodology is robust 
enough to be used for studies related to urban sprawl 
monitoring. 

On the other hand, in the case of the mountainous 
areas at high latitudes under study, it has proven dif-
ficult to separate the mountainous snow-free terrain 
from the snow-covered, without weather informa-
tion. The results for winter/summer show little dif-
ference between the mean, maximum and minimum 
backscatter. The reason is that in the first semester 
(winter) the mountains are full of snow, while in the 
second semester (summer) the snow and ice are melt-
ed and stagnated in the area. As a result, a relatively 
high backscatter is observed during both semesters. 
Nevertheless, during May, which is the driest month 
of the year in the study area, backscatter values are 
significantly lower. Consequently, during this period, 
it may be relatively easy to use backscatter values 
for snow line mapping, if considerably more satellite 
images are employed.

Regarding the agricultural and low vegetation are-
as, the interpretation of results ought to be performed 
in conjunction with the annual rainfall in the UK and 
by considering soil moisture and roughness. Especial-
ly with respect to the relative weight (importance) of 
these two last parameters, which are critical for SAR 
backscatter, this case study from the area in the UK 
has provided with some interesting insights.

More specifically, in this case study, winter backs-
catter values of agricultural areas were high, while the 
respective summer values were relatively low.

This information should be combined with the fact 
that during winter, surface roughness is low (theo-
retically low backscatter), as the agricultural areas 
have been harvested and seeded for the next growth 
period, while soil moisture is high (theoretically high 
backscatter).

On the contrary, during summer, the surface is rath-
er rough, as the agricultural production is fully grown 
(theoretically high backscatter), while soil moisture is 
relatively low (theoretically low backscatter). 

Therefore, it seems that for agricultural and low 
vegetation areas, soil moisture is a more important 
factor than roughness and it more or less determines 
the strength of SAR backscatter. 

In any case, working with this type of terrain 
requires more in-situ information, also taking into 
account daily meteorological data and the agricultural 
cycle of different crops.

Finally, for the forested areas, a methodology based 
on Corine Land Cover (CLC) maps has been adopted; 
in order to classify all the areas based on backscatter 
and coherence values and to discover the differences 
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between the various forest types. Common ground for 
all of these kinds of forest is the low coherence and 
the high variability, all over the year, in relation to all 
the other types of land cover. Therefore, it is relatively 
easy to discriminate forest from non-forested areas. 
On the other hand, the coherence values of the dif-
ferent types of forest are very similar (between 0.09–
0.67 for the summer and 0.14–0.83 for the winter). 
Thus, in order to discriminate between different types 
of forest, in-situ information and/or different kind of 
SAR data (more polarizations) is needed.

In conclusion, the heritage and experience gained 
from ERS and Envisat/ASAR SAR imaging for land 
cover classification approaches shall be invaluable 
for the exploitation of current and future SAR data. 
In the European context in particular, the Sentinel-1 
satellites (since 2014) within the realization of the 
Copernicus Programme, guarantee not only the con-
tinuity of European C-band SAR satellite missions, but 
also bring along significant improvements. These are 
mainly in terms of spatial and temporal resolution, as 
well as systematic acquisitions in at least two polar-
izing modes, resulting in an overall improved capa-
bility of monitoring land surface and discriminating 
between different land cover types.
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