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Abstract

Land use and land cover changes occur throughout the world, but none is more concerning than tropical 
deforestation, much of it for agricultural purposes. Rural-rural frontier migrant farmers such as those 
colonizing the Sierra del Lacandón National Park in Petén, Guatemala act as a primary direct agent in this 
land cover conversion. This paper seeks to compare three different algorithms for monitoring changes in 
forested land cover, making use of freely available remotely sensed Landsat images from two years, 1991 
and 2000. In the intervening 9 years, some forested land was converted to cropped, pasture, or fallow land, 
while other areas experienced no change. This paper contains a detailed description of the methods employed 
for three different change detection techniques, producing a  total of five land change maps: multidate 
principal components analysis (PCA), normalized difference vegetation index (NDVI) image differencing, 
and brightness greenness wetness (BGW) image differencing. Of the five land change maps produced, the 
Greenness component of the BGW transformation had the highest overall accuracy, at 86%, and is 
conservative in detecting change. The amount of change detected by this algorithm represents approximately 
300 km2 of forest loss, or 11.9% of the area examined.
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Background and Objectives

Land use and land cover changes occur throughout the world, but none is more 
concerning than tropical deforestation, which threatens biodiversity, releases greenhouse 
gases, and undermines the sustainability of local environments and of food production 
systems (Ojima, Galvin et al. 1994; Bongaarts 1996). Land clearing for agricultural 
purposes has been called “the most evident of all human relationships with the physical 
earth” (Parsons 1994), and indeed comprises the most expansive footprint of human 
induced environmental change on the face of the earth. 

Rural-rural frontier migrant farmers such as those colonizing the Maya Biosphere 
Reserve (MBR) and within it the Sierra del Lacandón National Park (SLNP) in Petén, 
Guatemala (Figure 1) act as the primary direct agents in this land cover conversion 
(Rudel and Roper 1996; Geist and Lambin 2001; United Nations 2001). Increasingly, 
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frontier deforestation of this kind encroaches into biodiversity-rich ‘‘protected’’ areas 
(FAO 2005). As the amount of land protected in conservation reserves expands (an 
estimated increase of 96 million hectares between 1990 and 2005, for a total of 11% of 
the total forested area (Brandon and Wells 1992; Rudel and Roper 1996), the amount 
of unoccupied land outside of reserves likewise decreases, prompting a subset of the 
rural poor to increasingly seek land and refuge within these strikingly biodiverse areas 
(Carr 1999). Starting in the late 1980’s, arriving waves of colonists within the SLNP 
are estimated to have reached 20,000 individuals by 1999, with a 70% annual growth 
rate estimated between 1993 and 1998 (Carr 2002). Concomitantly, approximately 
11% of the park’s forest canopy has been eliminated, 9% since 1990 (Turner II, Meyer 
et al. 1994; Geist 1999). 

	 Fig. 1 Area of interest

Most land cover changes within these protected areas consist of a limited number 
of types: forest converted to cleared land and cleared land allowed to regrow into 
forest, either for a fallow period or upon permanent abandonment. The topic discussed 
here, monitoring changes in forested land cover is directly applicable for input into 
such applications as global carbon cycle modeling. As the agents of these changes, 
human-induced land use/cover change (LUCC), especially in the tropics, is increasingly 
recognized as a critical priority of the global environmental change research agenda 
(Turner II, Meyer et al. 1994; Geist 1999). When combined with socio-economic data, 
monitoring land cover changes of these types also serves to help tease apart the human 
drivers of these conversions for further biogeochemical forecasting efforts, as well as 
for policy recommendations regarding rural sustainability and food security. 

Change detection seeks to establish that changes in the land covers of interest will 
result in changes in the at-sensor reflectance values recorded, independent of potential 
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variables exterior to land cover differences such as atmospheric conditions, illumination, 
or viewing angle. Spatial, spectral, thematic and temporal constraints inherent in change 
detection coupled with the wide array of change detection techniques available make 
selecting a project-appropriate algorithm challenging, with potentially profound impacts 
on the quality of the resultant change-detection product (Lu, Mausel et al. 2004). 

Acknowledging this, we performed change detections using different algorithms on 
a portion of the Maya Biosphere Reserve and compared their efficacy for accurately 
identifying areas of change in which forest was cleared in comparison to areas of no 
change. Although Hayes and Sader (2001) were able to identify areas of forest 
regrowth in a neighboring scene (Landsat TM path/row 20/48), regrowth proved to be 
negligible within the area examined here and thus was omitted as a change class of 
interest. We made use of three different change detection techniques, producing a total 
of five land change maps: multidate principal components analysis (PCA), normalized 
difference vegetation index (NDVI) image differencing, and brightness greenness 
wetness (BGW) image differencing. 

Data

We acquired two Landsat images (Table 1) for path/row 21/48 for two different time 
periods spanning 9 years, covering a portion of the northern Guatemalan departamento 
of Petén and the southern Mexican states of Chiapas and Tabasco from the University 
of Maryland’s Global Land Cover Facility. The temporal coincidence between image 
acquisition dates (April 3, dry season) should reduce scene to scene variation from 
differences in sun angle and vegetation phenology. 
Table 1 Data used in analysis

Acquisition Date Dataset Condition

3-Apr-1991 TM Clear

3-Apr-2000 ETM+ Hazy

Differences between images may result, however, from the presence of a  smoky 
haze (albeit relatively evenly distributed across the area of interest and therefore to 
a  certain extent correctable) in the image from 2000, as well as differences in soil 
moisture and plant vigor. Visual inspection within the 2000 image of reduced stream 
flows and standing water volume across the landscape mark an independently 
corroborated drought within the area of interest in comparison to the 1991 image. 
Indeed, the smokiness of the 2000 image may be attributable to increased agricultural 
burning, controlled or not, under drought conditions. Ideally, scenes should be acquired 
with the same sensor and not two different ones as done here with the TM and ETM+ 
sensors. Hence not all changes detected between images dates may be directly 
attributable to human modification of land cover. Preprocessing of the images and 
careful comparison of the efficacies of each of the proposed change detection 
algorithms aims to keep these confounding factors to a minimum. 
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Methods

Fig. 2 Location of path/row 21/48 = map 2

The images in question were acquired already georeferenced and orthorectified. 
Atmospheric correction, however, was necessary to minimize the impact of smokiness in 
the 2000 image. The smoke was relatively evenly distributed across the portion of 
greatest interest in path/row 21/48 (depicted as box in Figure 2), the part falling within 
the borders of Guatemala and comprising portions of the SLNP and the MBR; it was less 
evenly distributed across other portions of the scene. For that reason, and also to reduce 
data volume for increased accuracy and computational efficiency, the scenes were subset 
so only the portions of 21/48 of interest, the ostensibly protected lands within the SNLP 
and MBR, remained. At the same time, major water features were also masked.

Relative atmospheric and radiometric correction was performed for bands 1–5 and 7. 
A dozen invariant normalization targets were selected across the range of DN values 
for band 1 between the two time periods, which were used to calculate an empirical 
line for correcting DN values of the smoky 2000 image to be more in line with those 
taken in 1991. An example of corrected pixel values is shown in Figure 3, which 
compares a scatter plot of the 1991 master and 2000 subject images before and after 
radiometric correction. The shape of the plot is unchanged, but upon correction the 
range of the y-axis denoting DN values of the subject image is brought more in line 
with the range of the master image. 

All bands of the subject 2000 image were corrected for atmospheric and radiometric 
differences for their inclusion in the three different change detection methods. The 
BGW differencing change detection algorithm employed all bands. A layered spectral 
subset of the corrected bands 3 (visible red), 4 (NIR), and 5 (mid-infrared) were used 
for the multidate PCA and NDVI differencing algorithms in order to reduce between-
band correlation, data volume, and processing time (Hayes and Sader 2001). 

With the change detection algorithms discussed here, thresholds for determining 
change in the tail of the resultant histogram of DN values versus no change towards 
the middle of the histogram were set in an interactive and independent fashion until the 
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Fig. 3 Pre- and post-radiometric correction scatter plots

Kappa coefficient of agreement, which is a  measure of the agreement between 
a  classification map and reference data (Congalton 1991), was maximized for each 
category. Therefore validation points must be determined at the outset and used for 
final change detection map production (Hayes and Sader 2001). 

Validation points were selected by creating a N DVI difference map which was 
classified with an unsupervised k-means algorithm into 12 change classes, which were 
then used for equalized stratified random sampling, each of the 12 classes providing 10 
pixels for a total of 120 validation points. These points were overlain on a RGB-321 
display for both dates for visual inspection and classification as change or no change. 
Although it has been demonstrated that RGB-453 is preferable for visualizing 
agricultural activity, agricultural plots were easily confounded with the extensively 
fire-scarred but still forested areas using this visualization scheme and therefore RGB-
321 was used. Thresholds between the two change classes were repeatedly set and 
evaluated via a  confusion matrix, with the threshold level chosen based on 
a maximization of the Kappa coefficient of agreement between the classified change 
image and the reference data. These reference points were independent of the pixels 
used for the final accuracy assessments of the change maps produced by each method. 

Change Detection Algorithm 1: Multidate PCA 

One algorithm for consideration in a change detection exercise is the multidate PCA 
transformation that has been used by Jha and Unni (1988) in monitoring tropical forest 
conversion. Following the approach used by Conese et al. (1988), bands from both 
dates of interest (in this case bands 3, 4, 5 from 1991 and 2000) are combined into 
a single file and then transformed to create new, uncorrelated images. Hayes and Sader 
(2001) found a standardized routine employing the correlation matrix to be preferable 
to a  PCA employing the covariance matrix in applications such as this. The output 
matrix of eigenvectors shows between-date correlation for each band for each 
component, with change usually represented by a  lack of correlation among bands 
between dates. Eigenvectors with sign changes among band weights between dates 
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may represent real land cover change between times. Hayes and Sader (2001), using 
this algorithm on neighboring path/row (20/48) TM scenes to those under consideration 
here (21/48), found components 3 and 4 to meet this change of sign criteria, to follow 
patterns associated with physical changes in “greenness” and “brightness” respectively, 
and to show high spatial discontinuity in the areas of interest. Table 2 detailing the 
eigenvectors from the standardize PCA transformation of the data under consideration 
do indeed demonstrate a sign change in components 3 and 4 between the two dates. 

Table 2 Eigenvector Matrix (from Correlation Matrix)

Eigenvector
1991 
TM3

1991 
TM5

1991 
TM5

2000 
ETM3

2000 
ETM4

2000 
ETM5

Eigenvalue
Proportion 
of variation

Component 1   0.16 −0.31   0.47   0.26 −0.47   0.61 415.94 0.51

Component 2 −0.02 −0.60 −0.36 −0.06 −0.57 −0.44 240.48 0.29

Component 3 −0.05 −0.53 −0.48   0.14 0.51   0.45   71.83 0.09

Component 4 −0.24   0.49 −0.59   0.16 −0.43   0.37   67.60 0.08

Component 5 −0.46 −0.10   0.11 −0.82 −0.07   0.28   14.32 0.02

Component 6   0.84   0.10 −0.24 −0.45 −0.06   0.15     5.08 0.01

Total 
variance: 815.26

We elected to further examine only component 3 based on the results reported by 
Hayes and Sader and the fact that visual inspection revealed a higher degree of spatial 
discontinuity for component 3 between change classes in our resultant component 
images. Component 3 was subsequently examined by selecting a  threshold between 
change/no change by maximizing for the Kappa coefficient, and a map of land change 
classes was created (Figure 4). 

Change Detection Algorithm 2: BGW differencing

Brightness, greenness, wetness differencing based on the Kauth-Thomas (KT) 
Tasselled Cap transformation is similar in its approach to the PCA in that it reduces 
redundancy between bands, though in contrast to the PCA this transformation uses 
scene independent coefficients (Lu, Mausel et al. 2004). The Tasseled Cap transformation 
is a  linear, weighted summation across all TM bands, creating planes of brightness 
(corresponding to albedo), greenness (contrasting bands 3 and 4 and thus corresponding 
to a vegetation index), and wetness (showing sensitivity to plant and soil moisture). 
Differences across each of these indices over time indicate a possible change in land 
cover, with once again thresholds based on Kappa values necessary to separate each of 
the different change classes from areas of no change (Seto, Woodcock et al. 2002). 
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Collins and Woodcock (1996) found changes in KT wetness to be one of the most 
reliable single indicators of forest mortality. Difference images were created for each 
of the BGW transformations, and each was thresholded separately in order to compare 
their suitability for determining changes in forest clearing between the two dates. 

Change Detection Algorithm 3: NDVI differencing

The normalized difference vegetation index (NDVI) exploits the ‘red edge’ of 
vigorous green vegetation and is highly correlated with many vegetation parameters. It 
has also been shown to be relatively unaffected by topographic factors and is one of 
few indices with a  normal histogram. Image differencing between dates can detect 
areas of change in canopy cover or biomass (Hayes and Sader 2001).  The NDVI for 
a pixel is calculated based on the equation:

NDVI = (NIR − red) / (NIR + red)

In the case of Landsat data, the near infrared (NIR) band corresponds to Landsat 
band 4 and the visible red band corresponds to Landsat band 3. As with the other 
change detection methods mentioned above, evaluation via Kappa values assists in 
choosing appropriate thresholds between areas of change and areas of no change. 

Accuracy Assessment of Change Detection Maps

Utilizing each method detailed above, we produced five maps of change classes, 
delimiting the areas in which deforestation had taken place between 1991 and 2000. To 
select reference data for accuracy assessment which was representative of the change 
classes yet not biased towards any particular method, we selected 20 “unchanged” 
pixels from each map (for a total of 100), and 20 “changed” pixels (again, for a total 
of 100) from each map, randomized their ordering, and then did a visual comparison 
between the two dates to determine if the selected points had been cleared or not. We 
did this until we had evaluated 50 points “changed” and 50 points “unchanged”. An 
excess number of points were chosen (200 instead of the desired 100) because selecting 
only 50 of each would have resulted in far too few pixels which had actually 
experienced change in the intervening period. Because their order was randomized 
before evaluation, no particular method was privileged, however a seldom identified 
area of change is less likely to be included in the accuracy assessment. 

Results

Presented here are change class maps for each of the three methods presented above, 
corresponding to a  map thresholding for change/no change in PCA band 3 (figure 4), 
difference images for between date brightness-greenness-wetness transformations (figures 5, 
6, and 7), and a difference image for between date NDVI transformations (figure 8). These 
figures are followed by Table 3, which compares their respective accuracy evaluations. 
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Fig. 4 Change class map PCA band 3 method

Fig. 6 Change class map Greenness transformation 
method

Fig. 5 Change class map Brightness transformation 
method

Fig. 7 Change class map Wetness transformation 
method
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Fig. 8 Change class map NDVI transformation method

Table 3 indicates that the highest overall degree of accuracy and highest Kappa 
coefficient was achieved with the difference image between the Greenness component 
of the BGW transformations, with an overall accuracy of 86% and a Kappa coefficient 
of 0.72. This was closely matched by the NDVI difference map, followed by the 
Wetness difference map, with the Brightness difference map and PCA band 3 map 
coming in a  more distant fourth and fifth place respectively. Tables 4–6 below 
correspond to the confusion matrices produced during the accuracy assessment of the 
Greenness-based change class map with the known reference data.

Table 3 Change map accuracies 

  Overall accuracy Overall kappa

GREENNESS 86% 0.72

NDVI 85% 0.70

WETNESS 82% 0.64

BRIGHTNESS 55% 0.10

PCA 54% 0.08
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Table 4 Greenness Method Accuracy Assessment pixel count 

Reference Data (pixels)

Change No Change Total

Classified 
Data

Change 41   5   46

No Change   9 45   54

Total 50 50 100

Table 5 Greenness Method Accuracy Assessment percentages 

Reference Data (%)

Change No Change Total

Classified 
Data

Change   82   10   46

No Change   18   90   54

Total 100 100 100

Table 6 Greenness Method Accuracy Assessment Commission and Omission

Commission  
(%)

Omission  
(%)

Commission  
(pixels)

Omission  
(pixels)

Change 10.9 18.0 5/46 9/50

No Change 16.7 10.0 9/54 5/50

Table 7 Greenness Method Producer’s and User’s Accuracy

Producer’s  
Accuracy (%)

User’s  
Accuracy (%)

Producer’s  
Accuracy 
(pixels)

User’s  
Accuracy 
(pixels)

Change 82 89.13 41/50 41/46

No Change 90 83.33 45/50 45/54

The Greenness method reveals that 11.9% of the area examined in this exercise 
changed from forested to deforested between 1991 and 2000, equivalent to 335,653 out 
of a total of 2,824,644 pixels. This number of changed pixels represents approximately 
300 km2 of deforested area. While the overall accuracy of the Greenness change 
detection map is 86%, a more nuanced look at the strengths and weaknesses of this 
algorithm is revealed by breaking down its accuracy by category. The classifier could 
be called “conservative” in its estimates of areas that had undergone clearing, in the 
respect that it was more likely to misidentify a “change” pixel as an unchanged area 
than vice versa. Areas of “no change” had a higher producer’s accuracy in comparison 
to “change”, meaning that the instances of “no change” on the ground were more 
accurately identified as such by the algorithm. However, an excess of “change” pixels 
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was classified as “no change”, meaning that the user’s accuracy of the “change” 
category ended up being higher than the “no change” category. This is because a pixel 
identified as “change” is more likely to actually represent a changed area than a “no 
change” pixel is to represent an unchanged area.

Discussion

In discriminating between areas of deforestation and no change between the years 
1991 and 2000 in the Maya Biosphere Reserve of Petén, Guatemala, the method of 
differencing the Greenness band of the Kauth-Thomas Tasseled Cap transformations 
between dates was comparable to the method of differencing the NDVI values 
between dates. These indices are similar in their heavy reliance on “red edge” of 
vegetation reflectance, i.e. emphasizing the high differential between the absorption 
and reflectance of the red and near infra-red bands respectively in vigorous 
vegetation.  Rainforest in one date (1991), followed by an agriculture plot at the end 
of the dry season during a  drought year in the subsequent date (2000), will show 
a  pronounced difference in this measure, a  fact reflected by its relatively high 
accuracy in identifying areas of change. A possible bias may have been introduced 
favoring these methods, however, in the selection of validation points for setting the 
thresholding values between change/no change before final production of the change 
maps. Although we used the NDVI differencing to create a class image for equalized 
stratified random sampling, we thought that by selecting 12 change classes, a number 
far in excess of the change classes actually to be represented on the maps, we were 
not overly privileging the changes as revealed by the NDVI difference image and 
were rather making a  “quick and dirty” classification map for equalized stratified 
sampling. Although each difference image and PCA band 3 image were all 
thresholded independently using these validation pixels and maximized for their 
Kappa coefficient, it is possible that the use of the NDVI difference image privileged 
the outcome for the NDVI method, and also that of its closely related Greenness 
component of the BGW transformation. In the future a set of validation points for 
thresholding could be selected for each technique, although visual inspection and 
determination of the change classes in each selected pixel was by far the most time-
intensive aspect of this project. 

Conclusion

Three change detection algorithms were compared (PCA, BGW differencing, and 
NDVI differencing), producing a  total of five maps (PCA component 3, Brightness 
difference, Greenness difference, Wetness difference and NDVI difference) representing 
areas of rainforest in the Maya Biosphere Reserve of Petén, Guatemala which had 
undergone anthropogenic conversion into non-forested areas. Scenes from the reserve 
from 1991 and 2000 were compared and classified as changed (forest to unforested) 
and unchanged. After comparison of their relative accuracies, between-date differencing 



112

of the Greenness component of the Kauth-Thomas Tasseled Cap Transformation 
proves to have the highest accuracy in revealing areas of change.
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S u m m a r y

Three change detection algorithms were compared (PCA, BGW differencing, and NDVI differencing), 
producing a total of five maps (PCA component 3, Brightness difference, Greenness difference, Wetness 
difference and NDVI difference) representing areas of rainforest in the Maya Biosphere Reserve of Petén, 
Guatemala which had undergone anthropogenic conversion into non-forested areas. Scenes from the 
reserve from 1991 and 2000 were compared and classified as changed (forest to unforested) and 
unchanged. After comparison of their relative accuracies, between-date differencing of the Greenness 
component of the Kauth-Thomas Tasseled Cap Transformation proves to have the highest accuracy in 
revealing areas of change.
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