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The Effect of Lactobacillus casei on Experimental 
Porcine Inflammatory Bowel Disease Induced 
by Dextran Sodium Sulphate
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ABSTRACT
Background: Gastrointestinal injury caused by dextran sodium sulphate (DSS) is a reliable porcine experimental model of inflammatory 
bowel disease (IBD). The purpose of this study was to evaluate the effect of probiotic Lactobacillus casei DN 114001 (LC) on DSS-induced 
experimental IBD.
Results: Eighteen female pigs (Sus scrofa f. domestica, weight 33–36 kg, age 4–5 months) were divided into 3 groups (6 animals per group): 
controls with no treatment, DSS, and DSS + LC. LC was administered to overnight fasting animals in a dietary bolus in the morning on 
days 1–7 (4.5 × 1010 live bacteria/day). DSS was applied simultaneously on days 3–7 (0.25 g/kg/day). On day 8, the pigs were sacrificed. 
Histopathological score and length of crypts/glands (stomach, jejunum, ileum, transverse colon), length and width of villi (jejunum, ileum), 
and mitotic and apoptotic indices (jejunum, ileum, transverse colon) were assessed.
DSS increased the length of glands in the stomach, length of crypts and villi in the jejunum and ileum, and the histopathological score of 
gastrointestinal damage, length of crypts and mitotic activity in the transverse colon. Other changes did not achieve any statistical significance. 
Administration of LC reduced the length of villi in the jejunum and ileum to control levels and decreased the length of crypts in the jejunum.
Conclusions: Treatment with a probiotic strain of LC significantly accelerated regeneration of the small intestine in a DSS-induced 
experimental porcine model of IBD.
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BACKGROUND

The aetiology and pathogenesis of inflammatory bowel 
disease (IBD) comprise genetic susceptibility, various en-
vironmental factors (including infectious agents and xe-
nobiotics), and abnormal immune response to intestinal 
microbiota (1). Both ulcerative colitis (UC) and Crohn’s dis-
ease (CD) are associated with a reduced microbial diversity 
(2). Thus, the use of probiotics could be beneficial as they 
increase microbial diversity, which may subsequently im-
prove the balance and function of intestinal microbiota (3, 
4). The possible therapeutic role of probiotics and/or syn-
biotics has been evaluated in several studies; however, no 
indisputable final conclusions were achieved (5, 6).

The European Crohn’s  and Colitis Organisation has 
stated that there is no evidence to suggest that probiotics 
are beneficial for the maintenance of remission in CD (7). 
According to the Cochrane Database, there is insufficient 
evidence currently to draw any conclusion regarding the 
efficacy of probiotics for induction and maintenance of 
remission and prevention of post-operative recurrence of 
CD (8–10). In contrast, probiotic VSL#3 (a mixture of eight 
strains, including bifidobacteria, lactobacilli and Strepto-
coccus thermophilus) can improve therapeutic response 
and maintenance of remission in UC patients (11). The pro-
biotic VSL#3 has been shown to prevent pouchitis within 
the first year after surgery. According to Magro et al., af-
ter achieving remission in chronic pouchitis by treatment, 
VSL#3 can maintain the remission (12). Another probiotic 
strain that was found possibly beneficial to maintain the 
remission in UC is Escherichia coli Nissle. However there is 
no evidence on the efficacy of other probiotics regarding 
UC (13). The Cochrane Database reviews stated that con-
ventional therapy combined with a  probiotic does not 
improve overall remission rates in patients with mild to 
moderate UC (14–15). The effects of antibiotics, probiotics 
and other interventions for treating and preventing pou-
chitis are uncertain (16). Further studies are indispensable 
so that conclusive inference on the efficacy of probiotics in 
UC and CD can be made (4).

The experimental model of  colitis induced by dex-
tran sodium sulphate (DSS) in mice was proposed in mid 
90s (17–19). DSS-induced mucosal injury also represents 
a  suitable and reliable experimental porcine model of 
IBD (20–22). Pigs can be used in various preclinical ex-
periments due to their relatively similar gastrointes-
tinal physiology compared to that of  humans (23–24), 
including the porcine intestinal microbiome (25–27). In 
our previous projects, we studied the effect of probiotic 
Escherichia coli Nissle on bacteriocin production and in-
domethacin-induced gastrointestinal injury in experi-
mental pigs (28, 29). Escherichia coli Nissle alone provided 
a  significantly favourable trophic effect on the colonic 
mucosa. By contrast, indomethacin and probiotics ad-
ministered together led to the worst outcome on the 
porcine stomach, small and large bowel (“anti-synbiotic” 
effect), and bacteriocin production (28, 29). On the other 
hand, lactobacilli can ameliorate indomethacin-induced 
intestinal injury (30). Additionally, lactobacilli possess 
a  protective effect against DSS-induced experimental 
colitis in mice (31–34). The purpose of  this study was 

to evaluate the effect of probiotic Lactobacillus casei DN 
114001 (LC) on a DSS-induced experimental porcine mod-
el of IBD.

METHODS

ANIMALS
Eighteen experimental adult female pigs (Sus scrofa f. 
domestica, hybrids of Czech White and Landrace breeds; 
weight: 33–36 kg, mean 34.3 ± 1.0; age 4–5 months) were 
enrolled into the study. The animals were purchased from 
a certified breeder (Stepanek, Dolni Redice, Czech Repub-
lic; SHR MUHO 2050/2008/41). The pigs were housed in 
an accredited vivarium (temperature 21 ± 1 °C, 12 hour 
light/dark cycle; Faculty of Military Health Sciences, Hra-
dec Kralove, Czech Republic). All animals were fed with 
standard assorted A1 food (Ryhos, Novy Rychnov, Czech 
Republic) of equal amounts twice a day and had free access 
to drinking water. The acclimatization period was 21 days 
before the experiment.

The study was conducted in accordance with the Basic 
& Clinical Pharmacology & Toxicology policy for experi-
mental and clinical studies (35). Animals were held and 
treated in conformity with the European Convention for 
the Protection of Vertebrate Animals (36) and in accord-
ance with the ARRIVE Guidelines (37).

STUDY DESIGN
The animals were divided into 3 groups: controls with no 
treatment (n = 6), DSS (n = 6) and DSS + LC (n = 6). LC was 
administrated to overnight fasting animals in a single di-
etary bolus in the morning on days 1–7 (4.5 × 1010 live bac-
teria/day). DSS (molecular weight 40 kDa; purchased from 
Sigma-Aldrich, St. Louis, MO, USA) was applied simultane-
ously in another dietary bolus on days 3–7 (0.25 g/kg/day). 
On day 8 (after 24 hours of fasting), the pigs were anaesthe-
tized (intramuscular ketamine, Narkamon, Bioveta, Ivanov-
ice na Hane, Czech Republic, dose 20 mg/kg; and azaper-
one, Stresnil, Jansen Pharmaceutica, Beerse, Belgium, dose 
2  mg/kg), and sacrificed by exsanguination. Immediate 
autopsy was performed and specimens for structural and 
morphometric analysis were collected, including the stom-
ach (middle part of the gastric body), and the middle parts 
of the jejunum, ileum and transverse colon. The samples 
were immediately fixed with 10% neutral buffered formalin 
(Bamed, Ceske Budejovice, Czech Republic). There were no 
adverse events in any experimental group.

STAINING OF SAMPLES
The formalin-fixed samples were routinely processed. 
This included dehydration, embedding into paraffin (Para-
mix, Holice, Czech Republic), preparation of 5 μm thick 
tissue sections using microtome model SM2000 R (Lei-
ca, Wetzlar, Germany), rehydration, staining with hae-
matoxylin-eosin (Sigma-Aldrich), final dehydration, and 
mounting into an aqueous-free mounting medium DPX 
(Sigma-Aldrich).
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HISTOPATHOLOGICAL SCORE
Stained samples were evaluated using a BX-51 microscope 
(Olympus, Tokyo, Japan). The histopathology score (from 
0 to 11) was measured according to Appleyard and Wallace 
by summation of scores for loss of mucosal architecture, 
cellular infiltration, muscle thickening, crypt abscess for-
mation, and goblet cell depletion (Table 1) (38). Evaluation 
of all samples was performed by one person.

Tab. 1 Histopathology score of gastrointestinal damage (ref. 38).

Parameter Score
loss of mucosal architecture 0, 1, 2, 3 (absent, mild, moderate, 

severe)
cellular infiltration 0, 1, 2, 3 (absent, mild, moderate, 

extensive)
muscle thickening 0, 1, 2, 3 (absent, mild, moderate, 

extensive)
crypt abscess formation 0 or 1 (absent or present)
goblet cell depletion 0 or 1 (absent or present)

LENGTH OF CRYPTS AND GLANDS  
AND LENGTH AND WIDTH OF VILLI
The length of crypts/glands (all segments) and length 
and width of villi (small intestine only) were assessed by 
BX-51 microscope equipped with image analysis software 
ImagePro plus 7 (Media Cybernetics, Rockville, MD, USA). 
For this analysis, 20 randomly selected glands and 20 ran-
domly selected crypts and villi per animal were measured 
under 80× and 200× magnification, respectively.

EVALUATION OF MITOTIC  
AND APOPTOTIC ACTIVITIES
In crypts, mitotic and apoptotic activity were measured 
under 400× magnification and published as apoptotic and 
mitotic indices. The definition of an apoptotic cell and cal-
culation of both indices were according to previous work 
done by Pejchal et al. (39).

STATISTICS
Kruskal-Wallis test with multiple pairwise comparisons 
was used for statistical analysis (IBM SPSS Statistics, ver-
sion 24; IBM Corp., Armonk, NY, USA). Differences were 
considered significant when p < 0.05.

ETHICS APPROVAL
The Project was approved by the Institutional Review 
Board of the Animal Care Committee of the University of 
Defence (Record Number 14922006), Faculty of Military 
Health Services, Hradec Králové, Czech Republic.

RESULTS
DSS treatment increased the length of gastric glands by 
12% (p < 0.001), the length of villi and crypts in the jeju-
num by 10% (p = 0.023) and 41% (p < 0.001) respectively, 
the length of villi and crypts in the ileum by 16% (p = 0.047) 
and 23% (p < 0.001) respectively, and the histopathological 
score in the colon from 0 (controls) to 3.80 ± 1.3 (p = 0.007), 
which was associated with increased length of crypts and 
mitotic activity by 57% and 158% respectively (Table 2). 
Administration of LC reduced the length of villi in the 
jejunum and ileum to control levels. It also decreased the 
length of crypts in the jejunum by 13% when compared 
with DSS-treated animals (Table 2). Minor to moderate in-
flammatory changes were found over the small and large 
intestine (Figures 1–3).

Tab. 2 Average values of histopathological score, morphometric 
parameters and apoptotic and mitotic indices in the stomach, 
jejunum, ileum, and transverse colon (mean ± SEM).

Controls DSS DSS + LC
Stomach

Histopatho-
logical score

0 ± 0 0 ± 0 0 ± 0

glands length (µm) 1000 ± 28 1118 ± 19 † 1102 ± 17 †
Jejunum

Histopatho-
logical score

0 ± 0 0.6 ± 0.4 0.4 ± 0.4

villi length (µm) 293 ± 14 308 ± 13 † 282 ± 16 ‡
width (µm) 196 ± 11 191 ± 10 189 ± 10

crypts length (µm) 312 ± 9 440 ± 13 † 385 ± 15 †‡
apoptotic index (%) 0.4 ± 0.1 0.3 ± 0.0 0.3 ± 0.1
mitotic index (%) 0.7 ± 0.2 0.8 ± 0.3 0.7 ± 0.3
Ileum

Histopatho-
logical score

0 ± 0 0.2 ± 0.4 0.6 ± 0.7

villi length (µm) 251 ± 13 292 ± 19 † 245 ± 14 ‡
width (µm) 186 ± 9 187 ± 12 195 ± 12

crypts length (µm) 282 ± 9 347 ± 12 † 323 ± 11 †
apoptotic index (%) 0.4 ± 0.2 0.4 ± 0.2 0.3 ± 0.1
mitotic index (%) 1.3 ± 0.6 1.0 ± 0.3 1.1 ± 0.3
Transverse colon

Histopatho-
logical score

0 ± 0 3.8 ± 1.3 † 3.6 ± 1.2 †

crypts length (µm) 421 ± 10 660 ± 19 † 660 ± 18 †
apoptotic index (%) 1.0 ± 0.4 0.8 ± 0.3 0.7 ± 0.4
mitotic index (%) 1.2 ± 0.3 3.1 ± 1.6 † 2.4 ± 1.0 †

† Significant differences between control and DSS or control and DSS + LC 
groups: p ≤ 0.05.

‡ Significant differences between DSS and DSS + LC groups: p ≤ 0.05.
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DISCUSSION

Our current study brought new important insight into 
experimental IBD. To our best knowledge, this is the first 
study of LC in a DSS-induced porcine experimental model 
of IBD. DSS is able to induce not only colonic but also small 
intestinal injury. The lengths of jejunal villi and small in-
testinal and colonic crypts were significantly taller in the 
DSS group compared to controls and the DSS+LC group. 
The histopathology score and mitotic index were increased 
significantly only in the porcine colon.

Knowledge on a number of species of the genus Lac-
tobacillus has broadened considerably during the past 15 
years. More than two hundred species are currently recog-
nized (40). Some probiotic lactobacilli have been used for 
decades, and several species are clearly characterized by 
their anti-inflammatory effect (41–43). Nonetheless molec-
ular mechanisms underlying the probiotic impact have as 
yet not been fully understood (40). An ameliorating and/or 
preventive impact of lactobacilli in murine DDS-induced 
colitis has been found in several studies (44–47). This effect 
may be explained by inhibition of excessive activation of 
the NF-κB pathway (44, 45), suppression of TNF-α-mediat-
ed apoptosis of intestinal epithelial cells (48), by activation 
of epidermal growth factor receptor (49), down-regulation 
of neutrophilic infiltration (in the case of incomplete toll-
like receptor 4 complex signalling) (46), or by down-regu-
lation of T follicular helper cells (50).

Even a  lysate of non-living probiotic lactobacilli can 
prevent severe inflammation by improving the integrity of 
the intestinal barrier, and/or by modulation of the murine 
gut microenvironment (51–53). Lactobacillus casei decreas-
es caecal and colonic inflammatory scores (41, 47). It can 
also prevent body weight loss in experimental animals in 
DSS-induced murine colitis (47, 54).

Vetuschi et al. (55) and Araki et al. (56) found in-
creased apoptosis and decreased proliferation of epithe-
lial cells that might lead to a breakdown of the epithelial 
barrier function. The authors concluded that this could 
facilitate the mucosal invasion of intraluminal micro-
organisms in DSS-induced murine colitis (56). Chae et 
al. found that lactic acid bacteria can reduce both coli-
tis-induced and NF-κB-mediated apoptosis of intestinal 
epithelial cells in mice (48). We did not find any signifi-
cant difference in apoptosis in our current porcine study. 
However, the mitotic index of the colonic mucosa was 
significantly higher in the DSS group. It is surprising 
that the apoptotic index did not change in any segment 
of the investigated gastrointestinal tract. However, apop-
tosis is a very complex event which is regulated by both 
pro-apoptotic and anti-apoptotic components. Survivin, 
an anti-apoptotic protein has been studied extensively 
in cancer patients, but little knowledge exists about this 
inhibitor of apoptosis in IBD patients. It has been report-
ed that levels of survivin are increased in lamina propria 
T-cells in patients with CD, which leads to an anti-apop-
totic effect of the T cells (57). Mennigen et al. found that 
the probiotic mixture VSL#3 (also containing lactoba-
cilli) protects the epithelial barrier by maintaining tight 
junction protein expression and preventing apoptosis in 
a murine model of colitis (58). Other studies with VSL#3 

Fig. 1 Control sample of the porcine transverse colon stained with 
haematoxylin-eosin at 100fold original magnification. No pathology 
can be observed.

Fig. 2 DSS-treated sample of the porcine transverse colon stained 
with haematoxylin-eosin at 100fold original magnification. 
Slight mucosal oedema with acute inflammatory infiltrate and 
prolonged crypts can be observed. Arrow indicates mucosal 
erosion.

Fig. 3 DSS and Lactobacillus casei treated sample of the porcine 
transverse colon stained with haematoxylin-eosin at 100fold 
original magnification. Slight subepithelial (dashed arrows) and 
mucosal oedema with an in inflammatory infiltrate and prolonged 
crypts can be observed.
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in murine DSS-induced colitis found also a beneficial ef-
fect of probiotics improving ileal microbiota composition 
(59, 60). The impact of DSS on the entire gastrointestinal 
tract depends on three variables: molecular weight of 
DSS, daily dose and cumulative dose of DSS. In our cur-
rent study, only minor to moderate inflammatory chang-
es were found over the small and large intestine. Differ-
ing doses of DSS have been recommended (from 0.25 to 
1 g/kg/day) to induce experimental IBD. We intentionally 
decided for a lower dose. Experimental animals (mouse, 
rat, pig) may express different sensitivity to DSS. In ad-
dition, particular batches of DSS may differ in their grade 
of toxicity. That is why we recommend conducting pre-
liminary testing of a particular batch of DSS on control 
animals so that the dose can be adjusted accordingly (our 
unpublished data).

We are aware of possible limits of our current study. 
The project was designed as an acute one, lasting eight 
days only. Longer duration could reveal additional find-
ings, especially possible apoptotic changes of the intesti-
nal epithelial cells.

Probiotics may have a  positive impact on intestinal 
inflammatory changes through their interaction directly 
with the immune system or indirectly through the modu-
lation of gut microbiota (61). Further studies, both experi-
mental and clinical, are needed to understand this process 
in detail. Only thus, possible clinical applications may be 
possible.

CONCLUSIONS

Treatment with the probiotic strain LC significantly ac-
celerated regeneration of the small intestine in a DSS-in-
duced experimental porcine model of IBD.
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