INFEKČNÍ NEMOCI
ve standardní a intenzivní péči

HANUŠ ROZSYPAL, MICHAL HOLUB, MONIKA KOSÁKOVÁ

KAROLINUM
<table>
<thead>
<tr>
<th>Obsah</th>
<th>Strana</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBSAH</td>
<td>5</td>
</tr>
<tr>
<td>ZKRATKY</td>
<td>13</td>
</tr>
<tr>
<td>PŘEDMLUVA</td>
<td>17</td>
</tr>
<tr>
<td>ÚVOD</td>
<td>19</td>
</tr>
<tr>
<td>PŮVODCI INFEKČNÍCH NEMOCÍ</td>
<td>21</td>
</tr>
<tr>
<td>Bakterie</td>
<td>21</td>
</tr>
<tr>
<td>Viry</td>
<td>23</td>
</tr>
<tr>
<td>Houby</td>
<td>23</td>
</tr>
<tr>
<td>Paraziti</td>
<td>24</td>
</tr>
<tr>
<td>Priony</td>
<td>25</td>
</tr>
<tr>
<td>VÝSKYT A ŠÍŘENÍ INFEKČNÍCH NEMOCÍ</td>
<td>27</td>
</tr>
<tr>
<td>Proces šíření nákazy</td>
<td>27</td>
</tr>
<tr>
<td>Epidemiologická charakteristika nozokomiálních infekcí</td>
<td>28</td>
</tr>
<tr>
<td>PATOGENEZE INFEKČNÍCH NEMOCÍ A INFEKČNÍ IMUNOLOGIE</td>
<td>31</td>
</tr>
<tr>
<td>Kůže a sliznice</td>
<td>32</td>
</tr>
<tr>
<td>Imunitní systém</td>
<td>32</td>
</tr>
<tr>
<td>Únik mikrobů obranným mechanismům</td>
<td>33</td>
</tr>
<tr>
<td>Zánět</td>
<td>34</td>
</tr>
<tr>
<td>PŘÍZNAKY A PRŮBĚH INFEKČNÍCH NEMOCÍ</td>
<td>37</td>
</tr>
<tr>
<td>Horečka</td>
<td>38</td>
</tr>
<tr>
<td>Komplikace a následky</td>
<td>39</td>
</tr>
<tr>
<td>Nosičství</td>
<td>39</td>
</tr>
<tr>
<td>DIAGNÓZA INFEKČNÍCH NEMOCÍ</td>
<td>41</td>
</tr>
<tr>
<td>Anamnéza a fyzikální vyšetření</td>
<td>41</td>
</tr>
<tr>
<td>Laboratorní diagnostika obecně</td>
<td>42</td>
</tr>
<tr>
<td>Obecné principy odběru biologického materiálu</td>
<td>43</td>
</tr>
<tr>
<td>Nazofaryngeální výtěr</td>
<td>44</td>
</tr>
<tr>
<td>Kultivace stolice, rektální výtěr</td>
<td>45</td>
</tr>
<tr>
<td>Kvantitativní kultivace moči, stanovení kvantitativní bakteriurie</td>
<td>45</td>
</tr>
<tr>
<td>Hemokultura</td>
<td>46</td>
</tr>
<tr>
<td>Molekulárně genetická identifikace původec v krvi</td>
<td>47</td>
</tr>
<tr>
<td>Stěr z rány</td>
<td>48</td>
</tr>
</tbody>
</table>
ANTIMIKROBIÁLNÍ CHEMOTERAPIE .. 51
Rozdělení antibiotik .. 51
Mechanismus účinku .. 52
Rezistence bakterií k antibiotikům ... 52
Strategie antibiotické léčby .. 54
Zásady podání antibiotik .. 54

DALŠÍ SPECIFICKÉ LÉČEBNÉ MOŽNOSTI .. 57
Lidské (homologní) imunoglobulíny ... 57
Heterologní imunoglobulíny (žvýkoucí séra) ... 58
Kortikosteroïdy ... 59
Interferon .. 60
Hyperbarická oxygenoterapie .. 60
Chirurgická léčba .. 61
Intervenční radiologie ... 61

VŠEOBECNÁ LÉČEBNÁ OPATŘENÍ A OŠETŘOVATELSKÁ PĚČE .. 63
Ošetřovatelská péče ... 63
Pohybový režim ... 65
Pěče o dýchání ... 65
Pěče o příjem tekutin ... 66
Dietoterapie a léčebná výživa .. 66
Pěče o močení .. 67
Pěče o vyprazdňování stolice .. 67
Tišení bolesti .. 67
Snížení horečky .. 68
Pěče o osobní hygienu a čistotu prostředí .. 69
Pěče o kůži a sliznice ... 69
Prevence žilního tromboembolismu .. 69
Spánek .. 70
Pěče o psychosociální potřeby .. 70

LÉČEBNÉ POSTUPY V INTENZIVNÍ PĚCI O INFEKČNĚ NEMOCNÉ .. 71
Zajištění volných dýchacích cest ... 71
Umělá plicní ventilace ... 72
Zajištění přístupu do cévního řečiště ... 75
Volumoterapie ... 75
Úprava elektrolytové a acidobazické rovnováhy ... 76
Farmakologická podpora krevního oběhu .. 79
Léčba srdeční arytmie ... 80
Transfuz. .. 81
Léčba diseminované intravaskulární koagulace ... 81
Osmoterapie ... 82
Náhradní enterální výživa a vyživovací sondy .. 82
Parenterální výživa ... 84
Profylaxe stresového vředu ... 85
Kontinuální venovenózní hemodiafiltrace .. 86
Hemodiafiltrace s citrátovou antikoagulací ... 89
Hemodialýza .. 90
Plazmaeféza ... 92
Analgosedace a relaxace .. 93
Monitorace v intenzivní péči ... 94

ORGANIZACE PĚČE O INFEKČNĚ NEMOCNÉ .. 99
Izolace .. 99
Pertuse, černý kašel ... 155
Bronchiolitida ... 155
Pneumonie ... 156
Těžká pneumonie ... 157
Ventilátorová pneumonie .. 158
Legionelóza ... 159
Plicní absces ... 160
Varicelová pneumonie ... 160
Těžký akutní respirační syndrom .. 160
Jiné virové pneumonie .. 161
Invazivní plicní aspergilóza .. 161
Další onemocnění dýchacího ústrojí vyvolaná houbami 162
Pleuritida a hrdní empýém ... 162
Epidemická pleurodynie ... 165
Shrnutí ... 165

INFEKCE DUTINY ÚSTNÍ, JÍCNU A ŽALUDKU ... 167
Ošetřovatelská péče .. 168
Akutní herpetická gingivostomatitida 169
Orální herpes simplex .. 169
Orofaryngeální kandidóza .. 169
Epidemická parotitida .. 170
Hnědavá sialoadenitida ... 171
Infekce měkkých tkání obličeje a krku 172
Aktinomykóza – cervikofaciální forma 174
Ezofagitida ... 174
Mediastinitida ... 174
Shrnutí ... 174

ENTEROINFEKCE, ALIMENTÁRNÍ INTOXIKAČE A STŘEVNÍ PARAZITÓZY .. 177
Ošetřovatelská péče .. 180
Akutní gastroenteritida s dehydratací 182
Akutní průmyslové onemocnění kojenců a batolat 184
Salmonelóza ... 185
Kampylobakterióza .. 186
Shigelóza (bacilární dyzentérie, bacilární úplavice) 186
Klostridiová enterocolitida, pseudomembránózní kolitida 187
Jiné bakteriální střevní infekce ... 188
Rotaviróza gastroenteritida .. 188
Jiné virové gastroenteritidy ... 189
Střevní amébóza, amébová dyzentérie 189
Askarióza ... 190
Enterobióza ... 190
Hovězí tenióza (teniarynchóza) a prasečí tenióza 191
Alimentární intoxikace ... 191
Shrnutí ... 192

INFEKCE JATER, ŽLUČOVÝCH CEST A JINÉ NITROBŘIŠNÍ INFEKCE ... 193
Ošetřovatelská péče .. 195
Virová hepatitida .. 196
Fibrotizující cholestatická hepatitida 198
Fulminantní hepatitida .. 199
Chronická hepatitida B nebo C .. 200
Jiná postižená jater vyvolaná viry .. 201
Weilova nemoc, ikterická forma leptospirozy 201
<table>
<thead>
<tr>
<th>Titulek</th>
<th>Strana</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFEKČNÍ EXANTÉMOVÁ ONEMOCNĚNÍ</td>
<td>219</td>
</tr>
<tr>
<td>Ošetřovatelská péče</td>
<td>220</td>
</tr>
<tr>
<td>Spála, scarlatina</td>
<td>220</td>
</tr>
<tr>
<td>Spalničky, morbilli</td>
<td>221</td>
</tr>
<tr>
<td>Zarděnky, rubela, rubella</td>
<td>222</td>
</tr>
<tr>
<td>Plané neštovice, varicella</td>
<td>223</td>
</tr>
<tr>
<td>Pásový opar, herpes zoster</td>
<td>225</td>
</tr>
<tr>
<td>Jiná infekční exantémová onemocnění vyvolaná bakteriem</td>
<td>226</td>
</tr>
<tr>
<td>Jiná infekční exantémová onemocnění vyvolaná víry</td>
<td>226</td>
</tr>
<tr>
<td>Kawasakioho syndrom</td>
<td>227</td>
</tr>
<tr>
<td>Ektoperazitózy</td>
<td>227</td>
</tr>
<tr>
<td>Nodózní erytém</td>
<td>228</td>
</tr>
<tr>
<td>Multiformní erytém</td>
<td>228</td>
</tr>
<tr>
<td>Stevensův-Johnsonův syndrom</td>
<td>229</td>
</tr>
<tr>
<td>Shrnutí</td>
<td>229</td>
</tr>
<tr>
<td>INFEKCE MOČOVÉHO ÚSTROJÍ</td>
<td>211</td>
</tr>
<tr>
<td>Ošetřovatelská péče</td>
<td>213</td>
</tr>
<tr>
<td>Asymptomatická bakteriurie</td>
<td>213</td>
</tr>
<tr>
<td>Infekce močových cest nerozlišené lokalizace</td>
<td>214</td>
</tr>
<tr>
<td>Akutní intersticiální bakteriální nefritida, akutní pyelonelfritida</td>
<td>214</td>
</tr>
<tr>
<td>Chronická tubulointersticiální nefritida, chronická pyelonelfritida</td>
<td>215</td>
</tr>
<tr>
<td>Intrarenální absces, karbunkl ledviny a perinefrický absces</td>
<td>215</td>
</tr>
<tr>
<td>Uroinfekce po derivačních operacích a náhradách močového měchýře.</td>
<td>216</td>
</tr>
<tr>
<td>Katérové infekce močových cest.</td>
<td>216</td>
</tr>
<tr>
<td>Kandidurie</td>
<td>216</td>
</tr>
<tr>
<td>Urogenitální tuberkulóza</td>
<td>217</td>
</tr>
<tr>
<td>Epidemická nefropatie</td>
<td>217</td>
</tr>
<tr>
<td>Shrnutí</td>
<td>217</td>
</tr>
<tr>
<td>INFEKCE KŮŽE, PODKOŽÍ A MĚKKÝCH TKÁNÍ</td>
<td>231</td>
</tr>
<tr>
<td>Ošetřovatelská péče</td>
<td>232</td>
</tr>
<tr>
<td>Pyoderemie</td>
<td>234</td>
</tr>
<tr>
<td>Erysipel</td>
<td>235</td>
</tr>
<tr>
<td>Flegmóna, celulitida</td>
<td>236</td>
</tr>
<tr>
<td>Červenka, erysipeloid</td>
<td>236</td>
</tr>
<tr>
<td>Migrující erytém a borreliový lymfocytom</td>
<td>237</td>
</tr>
<tr>
<td>Kožní mukormykóza</td>
<td>237</td>
</tr>
<tr>
<td>Kožní forma antraxu</td>
<td>237</td>
</tr>
</tbody>
</table>
Syndrom diabetické nohy ... 237
Dekubitální vřed ... 238
Nekrotizující infekce měkkých tkání .. 238
Chronické granulomatózní infekce podkoží a měkkých tkání 241
Shrnutí ... 241

NEUROINFEKCE A POSTIŽENÍ NERVOVÉHO SYSTÉMU PŘI INFEKCÍCH. .. 243

<table>
<thead>
<tr>
<th>Ošetřovatelská péči</th>
<th>248</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hnisavá meningitida</td>
<td>250</td>
</tr>
<tr>
<td>Serózní meningitida</td>
<td>253</td>
</tr>
<tr>
<td>Chronická meningitida</td>
<td>254</td>
</tr>
<tr>
<td>Akutní encefalitida</td>
<td>254</td>
</tr>
<tr>
<td>Akutní klišťová encefalitida</td>
<td>255</td>
</tr>
<tr>
<td>Herpetická nekrotizující encefalitida</td>
<td>256</td>
</tr>
<tr>
<td>Encefalopatie infikovaných lidským virem immunodeficiencie</td>
<td>256</td>
</tr>
<tr>
<td>Progresivní multifočální leukoencefalopatie</td>
<td>257</td>
</tr>
<tr>
<td>Absces mozku</td>
<td>257</td>
</tr>
<tr>
<td>Jiné hnisavé ložiskové procesy centrálního nervového systému</td>
<td>258</td>
</tr>
<tr>
<td>Lymeská neuroborrelióza</td>
<td>258</td>
</tr>
<tr>
<td>Obryny u neuroinfekcí</td>
<td>259</td>
</tr>
<tr>
<td>Dětská přenosná obra</td>
<td>260</td>
</tr>
<tr>
<td>Akutní transverzální myelitida</td>
<td>261</td>
</tr>
<tr>
<td>Akutní polyradikuloneuritida</td>
<td>261</td>
</tr>
<tr>
<td>Neurocysticerkóza</td>
<td>263</td>
</tr>
<tr>
<td>Mozkový edém</td>
<td>263</td>
</tr>
<tr>
<td>Intrakraniální flebitida</td>
<td>264</td>
</tr>
<tr>
<td>Botulismus</td>
<td>264</td>
</tr>
<tr>
<td>Shrnutí</td>
<td>264</td>
</tr>
</tbody>
</table>

INFÉKCE OKA ... 267

INFÉKCE KOSTÍ A KLOUBŮ .. 269

<table>
<thead>
<tr>
<th>Ošetřovatelská péče</th>
<th>271</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akutní hematogenní osteomyelitida</td>
<td>272</td>
</tr>
<tr>
<td>Osteomyelitida obratle a spondylodiscitida</td>
<td>272</td>
</tr>
<tr>
<td>Tuberkulózní spondylitida</td>
<td>273</td>
</tr>
<tr>
<td>Posttraumatická a pooperační osteomyelitida</td>
<td>273</td>
</tr>
<tr>
<td>Osteomyelitida vzniklá per continuitatem</td>
<td>274</td>
</tr>
<tr>
<td>Chronická hematogenní osteomyelitida</td>
<td>274</td>
</tr>
<tr>
<td>Septická artritida</td>
<td>274</td>
</tr>
<tr>
<td>Infekce kloubní náhrady</td>
<td>275</td>
</tr>
<tr>
<td>Reaktivní artritida</td>
<td>275</td>
</tr>
<tr>
<td>Lymeská artritida</td>
<td>276</td>
</tr>
<tr>
<td>Revmatická horečka</td>
<td>276</td>
</tr>
<tr>
<td>Virové artritidy</td>
<td>277</td>
</tr>
<tr>
<td>Septická burzitida</td>
<td>277</td>
</tr>
<tr>
<td>Shrnutí</td>
<td>277</td>
</tr>
</tbody>
</table>

INFÉKCE LYMFATICKÝCH UZLIN A KRVE 279

<table>
<thead>
<tr>
<th>Ošetřovatelská péče</th>
<th>280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akutní hnisavá lymfadenitida</td>
<td>280</td>
</tr>
<tr>
<td>Ulceroglandulární forma tularémie</td>
<td>280</td>
</tr>
<tr>
<td>Nemoc z kočičího škrábnutí, felinóza</td>
<td>281</td>
</tr>
<tr>
<td>Klíšťová lymfadenopatie</td>
<td>282</td>
</tr>
<tr>
<td>Tuberkulózní lymfadenitida</td>
<td>282</td>
</tr>
<tr>
<td>Akutní infekční lymfocytóza</td>
<td>282</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Infekční mononukleóza</td>
<td>282</td>
</tr>
<tr>
<td>Cytomegalovirová mononukleóza</td>
<td>284</td>
</tr>
<tr>
<td>Infekce virem Epsteina-Barrové u imunodeficientních osob</td>
<td>284</td>
</tr>
<tr>
<td>Tranzientní aplastická krize a chronická anémie z infekce parvovirem B19</td>
<td>285</td>
</tr>
<tr>
<td>Akutní uzlinová forma toxoplasmózy</td>
<td>285</td>
</tr>
<tr>
<td>Shrnutí</td>
<td>286</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INFEKCE LIDSKÝM VIREM IMUNODEFICIENCE (HIV)</th>
<th>287</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ošetřovatelská péče</td>
<td>288</td>
</tr>
<tr>
<td>Infekce lidským virem immunodeficiency</td>
<td>290</td>
</tr>
<tr>
<td>Pneumocystová pneumonie</td>
<td>295</td>
</tr>
<tr>
<td>Toxoplasmová encefalitida</td>
<td>296</td>
</tr>
<tr>
<td>Kryptokoková meningitida</td>
<td>296</td>
</tr>
<tr>
<td>Shrnutí</td>
<td>297</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ÚNAVOVÝ SYNDROM A NĚKTERÉ OLIGOSYMPOTOMATICKÉ INFEKCE</th>
<th>299</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronický únavový syndrom</td>
<td>300</td>
</tr>
<tr>
<td>Larvální toxokaróza</td>
<td>300</td>
</tr>
<tr>
<td>Shrnutí</td>
<td>301</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISEMINOVANÉ HOREČNATÉ INFEKCE A PŘÍBUZNÉ STAVY</th>
<th>303</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ošetřovatelská péče</td>
<td>305</td>
</tr>
<tr>
<td>Sepse</td>
<td>307</td>
</tr>
<tr>
<td>Septický šok</td>
<td>310</td>
</tr>
<tr>
<td>Invazivní meningokokové onemocnění</td>
<td>313</td>
</tr>
<tr>
<td>Katětrovní sepse</td>
<td>316</td>
</tr>
<tr>
<td>Syndrom toxického šoku</td>
<td>317</td>
</tr>
<tr>
<td>Leptospiróza</td>
<td>318</td>
</tr>
<tr>
<td>Ehrlichióza</td>
<td>318</td>
</tr>
<tr>
<td>Invazivní candidóza</td>
<td>319</td>
</tr>
<tr>
<td>Malárie</td>
<td>319</td>
</tr>
<tr>
<td>Febrilní neutropenie</td>
<td>319</td>
</tr>
<tr>
<td>Perakutní sepse splenektomovaných.</td>
<td>321</td>
</tr>
<tr>
<td>Horečka nejasného původu</td>
<td>321</td>
</tr>
<tr>
<td>Shrnutí</td>
<td>322</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INFEKCE VZNIKLÉ V SOUVISLOSTI S CESTOVÁNÍM</th>
<th>325</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ošetřovatelská péče</td>
<td>329</td>
</tr>
<tr>
<td>Bříšní tyf.</td>
<td>330</td>
</tr>
<tr>
<td>Paratyf A-C</td>
<td>332</td>
</tr>
<tr>
<td>Malárie</td>
<td>332</td>
</tr>
<tr>
<td>Maligní malárie</td>
<td>334</td>
</tr>
<tr>
<td>Horečka dengue</td>
<td>335</td>
</tr>
<tr>
<td>Hemoragické horečky</td>
<td>336</td>
</tr>
<tr>
<td>Jiná importovaná a exoticá horečnatá onemocnění</td>
<td>337</td>
</tr>
<tr>
<td>Shrnutí</td>
<td>337</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INFEKČNÍ KOMPLIKACE RAN</th>
<th>339</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyogenní ranné infekce</td>
<td>339</td>
</tr>
<tr>
<td>Podkožní absces</td>
<td>340</td>
</tr>
<tr>
<td>Infekce v místě chirurgického výkonu</td>
<td>340</td>
</tr>
<tr>
<td>Tetanus</td>
<td>342</td>
</tr>
<tr>
<td>Pokousání zvířetem</td>
<td>343</td>
</tr>
<tr>
<td>Vzteklin, rabies, lyssa</td>
<td>343</td>
</tr>
</tbody>
</table>
ZKRATKY

ABR acidobazická rovnováha
ADH vazopresin, antidiuretický hormon
AIDS acquired immune deficiency syndrome, syndrom získané imunodeficience
ALI acute lung injury, akutní plicní poškození
ALP alkalická fosfatasa
ALT alaninaminotransferasa
ANAb autoprotilátka proti jadernému antigenu
anti-HBe protilátka proti e antigenu HBV
anti-HBs protilátka proti s (povrchovému) antigenu HBV
anti-HCV protilátka proti viru hepatitidy C
anti-HDV protilátka proti viru hepatitidy D
anti-HEV protilátka proti viru hepatitidy E
anti-HIV protilátka proti HIV
anti-LKM anti-liver kidney microsomal antibody, autoprotilátka proti jaternímu a ledvinnému mikrosomu
anti-SLA antibodies against soluble liver antigen, autoprotilátka proti solubilnímu jaternímu antigenu
aPTT aktivovaný protrombinový čas
ARDS acute respiratory distress syndrome, syndrom akutní dechové tísně
ARO anesteziologicko-resuscitační oddělení
AST aspartátaminotransferasa
BAL bronchoalveolární laváž
BCG bacillus Calmette-Guérine
BE base excess, přebytek nebo deficit bází
BSL Biological Safety Level, úroveň biologické bezpečnosti
cfu/ml colony forming units per millilitre, kolonie tvořící jednotky na mililitr
CMV (lidský) cytomegalovirus
CRP C reaktivní protein
CSWS cerebral salt wasting syndrome
CT computed tomography, výpočtová tomografie
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTV</td>
<td>celková tělesná voda</td>
</tr>
<tr>
<td>CVP</td>
<td>centrální venozní (žilní) tlak</td>
</tr>
<tr>
<td>CVVHDF</td>
<td>continuous venovenous hemofiltration-dialysis, kontinuální venovenozní hemodiafiltrace</td>
</tr>
<tr>
<td>DIC</td>
<td>diseminovaná intravaskulární koagulace/koagulopatie</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid, deoxyribonukleová kyselina</td>
</tr>
<tr>
<td>EB</td>
<td>virus Epsteina-Barrové</td>
</tr>
<tr>
<td>ECT</td>
<td>extracelulární tekutina</td>
</tr>
<tr>
<td>EEG</td>
<td>elektroencefalografie, elektroencefalogram, elektroencefalografický</td>
</tr>
<tr>
<td>EKG</td>
<td>elektrokardiografie, elektrokardiogram, elektrokardiografický</td>
</tr>
<tr>
<td>ERCP</td>
<td>endoskopická retrográdní cystopankreatikografie</td>
</tr>
<tr>
<td>ETCO₂</td>
<td>end-tidal CO₂, koncentrace CO₂ na konci expiria</td>
</tr>
<tr>
<td>ETR</td>
<td>end of treatment response, odpověď na konci terapie</td>
</tr>
<tr>
<td>EVR</td>
<td>early virological response, časná virologická odpověď</td>
</tr>
<tr>
<td>F 1/1</td>
<td>fyziologický roztok (plný)</td>
</tr>
<tr>
<td>F₂O₂</td>
<td>frakce kyslíku ve vdechované směsi</td>
</tr>
<tr>
<td>G ..%</td>
<td>..% roztok glukózy</td>
</tr>
<tr>
<td>GCS</td>
<td>Glasgow coma scale, glasgowské skóre</td>
</tr>
<tr>
<td>GIT</td>
<td>gastrointestinální trakt</td>
</tr>
<tr>
<td>GMT</td>
<td>γ-glutamyltransferasa</td>
</tr>
<tr>
<td>H 1/1</td>
<td>Hartmannův roztok (plný)</td>
</tr>
<tr>
<td>HAV</td>
<td>virus hepatitidy A</td>
</tr>
<tr>
<td>HBeAg</td>
<td>e antigen viru hepatitidy B</td>
</tr>
<tr>
<td>HBsAg</td>
<td>s (povrchový) antigen viru hepatitidy B</td>
</tr>
<tr>
<td>HBV</td>
<td>virus hepatitidy B</td>
</tr>
<tr>
<td>HCG</td>
<td>lidský choriový gonadotropin</td>
</tr>
<tr>
<td>HCV</td>
<td>virus hepatitidy C</td>
</tr>
<tr>
<td>HEPA</td>
<td>high-efficiency particulate air (filtr)</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus, lidský virus imunodefience</td>
</tr>
<tr>
<td>HRCT</td>
<td>high resolution CT, výpočtová tomografie s vysokým rozlišením</td>
</tr>
<tr>
<td>HSV</td>
<td>herpes-simplex virus</td>
</tr>
<tr>
<td>CHOPN</td>
<td>chronická obstrukční plicní nemoc</td>
</tr>
<tr>
<td>ICT</td>
<td>intracelulární tekutina</td>
</tr>
<tr>
<td>IFN-α</td>
<td>interferon alfa</td>
</tr>
<tr>
<td>IL-1, IL-6</td>
<td>interleukin 1, interleukin 6</td>
</tr>
<tr>
<td>IMO</td>
<td>invazivní meningokokové onemocnění</td>
</tr>
<tr>
<td>IVT</td>
<td>intravaskulární tekutina</td>
</tr>
<tr>
<td>JIP</td>
<td>jednotka intenzivní péče</td>
</tr>
<tr>
<td>K-EDTA</td>
<td>etylendiamintetraacetát draselný</td>
</tr>
<tr>
<td>L₁⁻L₅</td>
<td>první až pátý bederní (lumbální) obratel</td>
</tr>
</tbody>
</table>
LE buňky
MAP střední arteriální tlak
MODS multiple organ dysfunction syndrome, syndrom polyorgánové dysfunkce
MOFS multiple organ failure syndrome, syndrom polyorgánového selhání
MR magnetická rezonance, magneticko rezonanční (zobrazení)
MRI magnetic resonance imaging, magneticko rezonanční zobrazení
MRSA meticilin-rezistentní Staphylococcus aureus
NANDA North American Nursing Diagnosis Association
NG nazogastrická (sonda)
NN nemocniční nákazy
ORL otorinolaryngologie, otorinolaryngologický
OSSZ okresní správa sociálního zabezpečení
P puls
P_{\text{O}_2} parciální tlak kyslíku v arteriální krvi
PCR polymerase chain reaction, polymerážová řetězová reakce
PCT prokalcitonin
PCWP pulmonary capillary wedge pressure, tlak ve větvení plicnice
PEEP positive end-expiratory pressure, pozitivní tlak na konci výdechu
PEG percutaneous endoscopic gastrostomy
PEG-IFN pegylovaný interferon
POCT point-of-care test, test (prováděný) v místě péče
PSA prostate-specific antigen, specifický prostatický antigen
R 1/1 Ringerův roztok (plný)
RLP rychlá lékařská pomoc
RNA ribonucleic acid, ribonukleová kyselina
RS respiračně syncytiaální (virus, virová infekce)
RTG rentgen(ový)
S_{\text{O}_2} saturace hemoglobinu kyslíkem v arteriální krvi
SARS severe acute respiratory syndrome, těžký akutní respirační syndrom
SIADH syndrome of inappropriate antidiuretic hormone secretion, syndrom inadequate sekrece antidiuretického hormonu (ADH)
SIRS systemic inflammatory response, systémová zánětlivá odpověď
SMAb smooth-muscle autoantibodies, autoprotitáky proti hladkému svalu
S_{\text{p}_\text{O}_2} saturace hemoglobinu kyslíkem stanovená pulsním oxymetrem
SVR sustained virological response, setrvalá virologická odpověď
TCT transcelulární tekutina
TEE transefágeální (jícnová) echokardiografie
TEN tromboembolická nemoc
Th_1–Th_12 první až dvanáctý hrudní obratel
TK (arteriální) krevní tlak
TKs systolický krevní tlak
TNF-α tumor necrosis factor-alpha, faktor nekrotizující nádory-alfa
TTE transtorakální (hrudní) echokardiografie
UPV umělá plicní ventilace
VHA,B,C,D,E virová hepatitida A, B, C, D, E
VNN vysoce nebezpečná nákaza
VRE vankomycin-rezistentní enterokoky
VZV varicella-zoster virus, virus varicely a zosteru
ZZS zdravotnická záchranná služba

Nejsou uvedeny zkratky vysvětlené v textu, které se vyskytly ojediněle, dále chemické vzorce, fyzikální jednotky a zkratky součástí názvu (antigen p24, CD4+ lymfocyty, maska 3M atd.).
PŘEDMLUVA

Úvodní část naší učebnice obsahuje krátké repetitorium základních poznatků z mikrobiologie a epidemiologie, vysvětlení podstaty infekce s výkladem funkce imunitního systému a zánětu, poznámky k obecné symptomatologii a diagnostice infekčních nemocí s důrazem na odběr biologického materiálu a stručný výklad o léčebných možnostech. Poměrně obecná kapitola se věnuje léčebným postupům v intenzivní péči o infekčně nemocné. Další úvahy vysvětluji principy karanténních režimů a specifiky rysu péče o infekčně nemocné. Doplňkem obecné části jsou kapitoly o opatřeních při výskytu infekce a o preventivních a profylaktických postupech, které jsou tradičně předmětem oboru epidemiologie.

Systematická část zahrnuje kapitoly o infekčních nemocích jednotlivých orgánových systémů. Je dodržována jednotná osnova zahrnující úvodní informace – definici a rozdělení, patogenetické poznámky, nebezpečí vyplývající z daných infekcí, obecné příznaky a diagnostický postup, umístění pacienta a rozlišení komplikací, popř. další vysvětlující informace. Důležitým oddílem každé kapitoly systematické části je ošetřovatelská péče. Vycházíme z představy, že činnost sestry zahrnuje určité rutinní postupy, vykonání lékařskýchardinací.

17
a pak světovou a relativně samostatnou práci – tzv. ošetřovatelský proces. Zde sestra reaguje na individuální potřeby pacienta a nastalé problémy. Proto je vedle osnovy ošetřovatelského plánu u dané skupiny infekčních chorob obažen i výčet pravděpodobných ošetřovatelských diagnostik, které nejspíše přichází v úvahu. V učebnici jsme se úmyslně lehce odchylili od terminologie NANDA, protože mnohdy dobře nevystihuje realitu, klasifikace do domén neodpovídá logice výkladu, časovému vývoji rozličných potřeb pacienta a ani realnímu přístupu k problému akutně infekčné nemocného člověka. Za oddílem o ošetřovatelské péči následuje popis nemocí přibližně v pořadí podle postiženého orgánu, od syndromů k nozologickým jednotkám, od infekcí bakteriálních přes virové a mykotické k parazitárnímu. Výklad o nemocech je dostatečně podrobný, i když ochuzený o patogenetické a diagnostické aspekty; pro potřebu sestry však více než dostávající. Kapitola o infekcích specifických skupin má zřetelně doplňující charakter a slouží k dokreslení představy o významu infekčních nemocí pro různé skupiny nemocných.

V předkládaném textu si slibujeme podat ucelený a systematický výklad poznatků oboru infektologie, nabídnout studentkám a studentům základní text ke studiu oboru a vzbudit zájem o problematiku infekčních nemocí, prohlobit chápání vztahů a pravidel platných pro všechny klinické obory, učitelům vymezit rozsah učební látky a požadavky na absolventy a absolventy, sestrám již pracujícím na infekčních a příbuzných odděleních poskytnout vysvětlení smyslu některých činností v jejich každodenní práci. Ke zlepšení didaktické vybavenosti učebnice patří i kontrolní otázky na konci kapitol. Obsah kapitol speciální části je uspořádán do jednotného formátu a každá kapitola je zakončena krátkým shrnutím klíčových informací, aby se při učení neopomínila zásadní fakta.

Napsání učebnice jsme věnovali nemálo úsilí. Bylo nezbytné sbírat, třídit a kritizovat, aby byla nalezena vlastní cesta v oboru s nedoceněnou důležitostí. Věříme, že nabízíme učebnici blízkou praxi, životnou a současně i zajímavou. Pro oživení slouží četná schémata a fotografie zhotovené na všech odděleních infekční kliniky Nemocnice Na Bulovce. Na tomto místě je milou povinností poděkovat oběma recenzentům, keří svými bohatými zkušenostmi, každý pod zorným úhlem svého odbornosti, významně ovlivnili podobu textu, a dále pracovníkům infekční kliniky, kolegům a přátelům, kteří různým způsobem přispěli ke zdokonalení knihy.

Doufáme, že první česká učebnice intenzivní péče o infekčně nemocné pro zdravotní sestry přinese nejen spolehlivý zdroj použití pro studenty a studenty magisterského studia intenzivní péče, ale pomůže ve vzdělávání sestrám na infekčních odděleních a zájemcům mezi ostatními sestrami, popřípadě i mediky a lékaři. Čtenářům přejeme, aby se jim z předkládaného textu dobře učilo a aby nalezli odpovědi na většinu důležitých otázek týkajících se infekčních nemocí a ošetřovatelské péče o infekčně nemocné. Členitá problematika infektologie se promitá do různých oblastí zdravotnictví a medicíny a dobré pochopení principů a znalost faktů uvedených v učebnici se nepochybně zúročí v péči o nemocné.
objevovat i stinné stránky – nebral se ohled na jednotlivce, zkostnatělý represivní přístup se uplatňoval i bez logického opodstatnění, pacienti byli vcelku bezdůvodně drženi v nemocnici do negativity laboratorních testů. Z tohoto postavení se musel obor transformovat do dnešní podoby, aby odrážel nároky moderní medicíny, výskyt nozokomiálních infekcí, infekcí imunosuprimovaných osob a problematiku importovaných nákaz.

Infekční nemoci postihující kterýkoli orgán a všechny věkové skupiny jsou samozřejmě předmětem zájmu i většiny lékařských oborů. V základní podobě musí infekční nemoci léčit kterýkoli lékař a na kterémkoli oddělení, nicméně komplikované případy, diferenciální diagnostika, výběr a vedení složitéjší antibiotické léčby, infekce různě disponovaných jedinců, intenzivní péče s potřebou izolace pacienta jsou tématy, jejichž dominantní postavení infektologii zůstává nebo by – ku prospěchu pacientů – mělo zůstat.
PŮVODCI INFEKČNÍCH NEMOCÍ

BAKTERIE

Bakterie jsou nejjednodušší jednobuněčné mikroorganismy.

a) kulovitý – koky, ve dvojicích – diplokoky, řetízcích – streptokoky a shlucích – stafylokoky
b) tyčinkovitý – bacily
c) spirální – vibria, spiraly a spirochety.

Krystalová violeť v barvení podle Grama obarví některé bakterie na fialovo – grampožitivní bakterie, jiné se neobarví, a aby se v mikroskopickém preparátu zviditelnily, musí se dobarvit červeným barvivem (safraninem nebo karbolfuchsinem) – to jsou gramnegativní bakterie.

Struktura bakteriální buňky: Bakteriální jádro je složeno z uzavřeného vinutého vlákna deoxyribonukleové kyseliny (DNA) o délce asi 1 mm. Cytoplazma postrádá organela, ale obsahuje ribozómy, kde se odehrává tvorba bílkovin (proteosyntéza). Cytoplazmatická membrána je struktura z proteinů a lipidů, která řídí výměnu látek s okolím. Na její vnější straně naléhá buněčná stěna. Ta mechanicky vyztužuje bakteriální buňku, určuje její tvar a zajišťuje ochranu bakterie před fyzickým poškozením. Grampožitivní bakterie mají stěnu složenou z peptidoglykanu, stěna gramnegativních bakterií je tenčí, ale komplexejší a obsahuje lipopolysacharid (endotoxin). Bakteriální pouzdro je tvořeno polysacharidy a chrání bakterií před fagocytózou. Fimbrie (pili) jsou jemné brvy, které umožňují přilnavost k povrchům nebo přichycení bakterií při spájení (konjugaci), při kterém si předávají DNA. Delší přívěsky – bičíky – slouží pohybu.

Biofilm je organizované společenství mikrobů, které narůstají na pevném povrchu a které tvoří obal z mezibuněčné hmoty. Schopnost tvořit biofilm bakteriím umožňuje kolonizovat umělé implantáty. Přisedlé bakterie lépe odolávají obranným mechanismům hostitele a současně jsou vysoce rezistentní k antimikrobiální terapii.

Kultivace bakterií se rozumí jejich pěstování s použitím vhodných živných půd ve vhodných vnějších podmínkách. Bakterie se očkují (inokulují) do tekutých živných půd obvykle ve zkumavkách nebo na tuhé (zpevněné agarem) v Petriho miskách. Na pevných živných půdách bakterie tvoří kolonie, tj. shluky, které se (teoreticky) namnožily z jedné bakteriální buňky (obr. 1). Kultury mají omezenou životnost a musí být oživovány přeočkováním (tzv. pasážováním). Morfologické, růstové a metabolické charakteristiky izolovaných a pomnožených bakterií slouží k jejich identifikaci. Bakterie pomnožené do dostatečného množství mohou být blíže charakterizovány na základě reakce se specifickými protilátkami (typizace) a testovány na citlivost k antibiotikům (obr. 2 a 3).

Genetika bakterií: Genetická informace zapsaná sekvencí bází deoxyribonukleové ky-seliny (DNA) je umístěna v chromozómu (jádře) a plazmidech. Plazmydy jsou menší než chromozóm a není genetickou informací, která může být významná, ale není nezbytná, např. schopnost odolávat antibiotikům.

Vliv fyzikálních a chemických činitelů na bakterie: Chemické látky mohou mít na bakterie účinek bakteriostatický (zastavují množení bakterií) nebo baktericidní (umírají bakterie). Uvnitř druhu se mohou vyskytnout rezistentní kmeny, které se vyznačují vyšší odolností (rezistenci). K hubení bakterií slouží dezinfekce a sterilizace. Mezi obsahem obou pojmů není podstatný rozdíl. Dezinfekce je odstraňování patogenních zárodků (spíše chemickými prostředky), sterilizace je hubení všech živých mikroorganismů (spíše fyzikálními prostředky). Proto je vhodné definovat dezinfekci jako postup k usmrcení mikrobů a sterilitu jako stav prostředí zbaveného všeho života. Historický pojem asepse označuje stav bez patogenních mikrobů a antisepsie je hubení patogenních zárodků. Spolehlivá sterilizace se provádí v autoklávech působením nasycených vodních par o teplotě 120 °C a zvýšeném tlaku po dobu 20 min. Suché teplo je pro ničení mikrobů méně účinné a v horkovzdušných
sterilizátorech se musí užívat teplot 170–180 °C po dobu 2 hodin. Ultrafialové záření je absorbováno v DNA a způsobuje poruchy replikace DNA. Koncentrace vodíkových iontů (pH) má rovněž vliv na růst a množení bakterií, acidofilní bakterie a kvasinky vyžadují slabě kyselé prostředí.

VIRY

Viry jsou nejmenší bezbuněčné organismy, které se samostatně nemnoží a jsou plně závislé na existenci hostitelské buňky. Pomocí hostitelské buňky se mohou množit a přizpůsobovat se změnám prostředí. Mimo hostitelskou buňku jsou ve statickém stavu.

Morfologie virů: Viry jsou nejmenší mikroorganismy – jejich velikost je od 7 nm po 300 nm (= 0,3 μm). To znamená, že jsou řádově 10× menší než bakterie. Až na výjimky, viry nejsou vidět ve světelném mikroskopu a lze je zobrazit v elektronovém mikroskopu. Rozlišují se tři morfologické formy: tyčinkovité, kulovité a viry (fágy) s komplexní stavbou.

Struktura viru: Zralý virus schopný existence mimo buňku se označuje jako virion. Skládá se z:
- nukleové kyseliny (buď RNA, a nebo DNA)
- kapsidy – pláště sestaveného z bílkovinných podjednotek a u obalených virů
- obalu – složeného z proteinů, glykoproteinů a lipidů, odvozeného od struktur hostitelské buňky. Prostor mezi kapsidou a obalem může být vyplněn matrix.

Replikace virů: Vnímavá buňka může bit virem infikována – receptory na jejím povrchu dovolí přichycení a následné proniknutí víru. V permisivní buňce pak vírus může dokončit celý replikační cyklus, naopak v nepermisivní buňce může i perzistovat a uvolnit se do datatečně.

Genetika virů: Genom virů se mění mutacemi, rekombinací či komplementací. Mutace jsou spontánní změny virového genomu, které vedou ke změně virulence, teplotního optima či odolnosti (rezistence) virů k antivirotikům. RNA podléhá mutacím více než DNA a mnohé RNA viry tak vynikají vysokou plasticitou a schopností přizpůsobit se novým podmínkám. Recombinace a komplementace jsou způsoby výměny genetického materiálu mezi viry.

Vliv fyzikálních a chemických činitelů na víry: V odolnosti vůči vyschnutí se víry značně liší, obecně choulostivější jsou obalené viry a přenášejí se tak zejména přímým kontaktem nebo kapěnkovou infekcí. Chemické látky mohou mít na víry smrtící – virucidní účinek. K detergentům jsou více náchylné víry s lipidovou porcí, tedy rovněž opláštěné. K nápadně odolným virům patří původce virové hepatitidy B.

HOUBY

Struktura mykotické buňky: Buňka mikromycety (stejně jako jiné eukaryotní buňky) obsahuje jádro s několika chromozómy ohraničené jadernou membránou. Základním stero-
lem membrány je ergosterol (u lidské buňky cholesterol). Tato odlišnost od živočišné buňky umožňuje zásah některých antimykotik. Buněčná stěna hub obsahuje peptidomannany, které se uvolňují do plazmy nebo jiné tělneckutiny a jejich detekce může posloužit k diagnostice.

Klasifikace a množení hub: Vědecká klasifikace hub je dosti složitá. Pro praktické účely klinické medicíny se používá tradiční rozdělení mikromycet na jednobuněčné kvasinky, které mají kulovitý nebo oválný tvar buňky a množí se pučením, a vláknité houby – zhruba překrývající se s pojmem plísně – které vytváří vlákna (hyfy) rostoucí do délky a větvící se. Některé – tzv. dimorfní – houby tvoří jak kvasinkovou, tak plísňovou formu v závislosti na prostředí a teplotě, ve kterých vyrůstají.

Mikroskopie, kultivace, genetické a antigenní vlastnosti: Mikroskopické, resp. histologické vyšetření tkáně je u některých pomalu rostoucích a kultivačně náročných hub stejně hodnotné jako kultivace. Mírně dovoluje posoudit invazi tkáně a odlišit tak kontaminaci, popř. kolonizaci. Kultivace kvasinek a plísní se provádí v různých kultivačních půdách a živných médiích (nejčastěji na Sabouroudově agaru).

Epidemiologie: Kandidy, kryptokoky a aspergily jsou ubikvitní (všudypřítomné) mikrozorganismy. Vyskytují se v půdě, lze je izolovat ze zvířat, ale i neživých předmětů, potravin, a sám mezi lidmi. Naopak jiné houby jsou rozšířeny v určitých oblastech vázané na specifický biotop. Mykózy s geograficky definovaným výskytem se označují jako endemické mykózy. Člověk se infikuje nejspíše inhalací nebo inokulací spor. Mezilidský přenos je vzácný, ale u některých mykóz možný. Při ošetřování pacientů se systémovými mykózami tedy obvykle nejsou nutná zvláštní hygienická opatření. Mezilidským přenosem se mohou šířit některé dermatofytózy a určité formy kandidózy (např. u novorozených).

Vnímavost: Mikromycety způsobují onemocnění hlavně u lidí se sníženou obrannou odolností.

PARAZITI

Původci lidských onemocnění jsou živočišní paraziti, kteří se řadí k
(1) prvokům – Protozoa (způsobují protozoonózy)
(2) červům – helmintům (způsobují helmintózy)
 – ploštěncům – Platyhelmithes: motolicím – Trematoda – a tasmaticím – Cestoda
 – hlisticím – Nematoda
(3) členovcům, tj. roztočům a hmyzu.

Tělo prvoků je tvořeno jednou buňkou o velikosti 1–50 μm. Helminti jsou velmi různorodí co do velikosti (1 mm – tasmnic i více než 10 m), stavby těla, vývojového cyklu a patogenního působení. Ektoparaziti žijí na povrchu těla, endoparaziti žijí uvnitř lidského těla, a to v tkáních (tkáňoví paraziti – např. toxoplasma, leishmanie, zvířecí škrkavky), v krvi (krevní paraziti – např. plasmodium, trypanosoma), ve střevě (střevní paraziti – entaméby, giardie, roupi, lidské škrkavky) a v tělních dutinách (dutinoví paraziti – např. trichomonády). Podle postavení v životním cyklu parazita člověk figuruje jako mezihostitel nebo konečný hostitel (v němž se parazit pohlavně rozmnožuje). Infekce, při níž se parazit v těle hostitele nemnoží, se označuje jako infestace (zamoření).
PRIONY

Kontrolní otázky

Jaké je základní taxonomické dělení bakterií a jeho význam pro léčbu infekcí?
Které struktury bakteriální buňky mají význam pro jednotlivé vlastnosti bakterií?
Popište a porovnejte odolnost bakterií, virů a mikromycet vůči zevním vlivům!
Infekční nemoci se vyskytují sporadicky, epidemiicky nebo endemicky. Epidemie je forma výskytu infekční nemoci, kdy dojde k nahromadění případů v časových i místních souvislostech. Epidemie postihující rozsáhlé oblasti nebo celé kontinenty se označuje jako pandemie. Endemický výskyt je omezen na určité území bez časového omezení.

Výskyt infekčních nemocí a procesem jejich šíření se zabývá epidemiologie. Vedle studia podmínek šíření nákaz a metod jejich předcházení, potlačení či eliminace tento vědní obor vyvinul nástroje pro popis hromadně se vyskytujících onemocnění a epidemiologie překročila rámec studia infekčních nemocí.

PROCES ŠÍŘENÍ NÁKAZY

Charakteristickou vlastností většiny původců infekčních nemocí je schopnost být přenesen z člověka na člověka, u zoonóz je původce přenesen ze zvířete na člověka.

Proces šíření nákazy (infekční proces, v populací měřítku epidemiický proces) se skládá ze tří článků:
1. **zdroje původce** – člověka nebo zvířete – nemocného nebo nosiče, výjimečně prostředí, v nichž přežívají nebo se rozmnožují původci
2. **přenosu původce** – cesty od zdroje k vnímavému jedinci
3. **vnímavého organismu**, resp. vnímavé populace (obr. 4).

Obr. 4 Schéma infekčního procesu
Cesty přenosu: U většiny infekcí je možno více cest přenosu, většina však má některý z přenosů typický a převažující. To je určeno lokalizací původce ve zdroji, vlastnostmi původce, zjevná odolnosti k zevním vlivům, a vstupní branou infekce. Přenos se děje přímo (kontaktem – dotykem, polibkem, sexuálním stykem, kousnutím, těž kontaminovanýma rukama – např. říčně orální přenos) nebo nepřímo (prostřednictvím faktorů přenosu). Nepřímý přenos se může uskutečnit a) ingesci – polknutím vehikula, tj. kontaminované vody nebo potraviny (alimentární nákazy)
b) inhalací – vdechnutím původce v aerosolu (kapének) či prachu (vzdušné čili volatilní a kapkénové nákazy)
c) inokulaci – prostřednictvím (krevsaajících) členovců (transmisivní nákazy) nebo zraněním či zdravotnickou manipulací kontaminovanými předměty, zvláště jehlami (krevní nákazy)
d) kontaminaci – z kontaminovaných předmětů přicházejících do styku s povrchem těla (např. ranné infekce).

Vnímavý organismus je jedinec, jehož okamžitý stav povrchových struktur, imunitního systému i různých fyziologických funkcí dovoloji infekčnému agens vyvolat onemocnění. Vstupní branou jsou sliznice dýchacích cest, gastrointestinální trakt, kůže a sliznice genitálu, spojivka apod. Intaktní kůže představuje pro většinu mikroorganismů nepřekonatelnou barírku a mikrobi pronikají do těla po porušení její integrity.

EPIDEMIOLOGICKÁ CHARAKTERISTIKA NOZOKOMIÁLNÍCH INFEKCÍ

Nozokomiální (noošokomeion, nosokomeion = nemocnice) infekce (nemocniční nákazy, NN) jsou přenosná onemocnění získaná v souvislosti s pobytem ve zdravotnickém zařízení (obvykle během hospitalizace). Mezi nozokomiální infekce se nepočítají (1) onemocnění, která vznikla během pobytu v nemocnici a pacient byl přijat ještě v inkubační době, (2) ani onemocnění zdravotníků vzniklá v souvislosti s výkonem povolání, (3) ani dodatečně zjištěná inaparentní nákaza či nosičství. Specifické infekce jsou spojeny s diagnostickými a léčebnými výkony, nespecifické nemocniční nákazy jsou hromadná onemocnění, která se v době epidemiemie vyskytují i v jiných kolektivech (např. chřipka). Výskyt prvních je ovlivňován úrovni léčebné a ošetřovatelské péče, zatímco výskyt druhých odráží aktuální epidemiologickou situaci v populaci.

Historie: Roku 1847 I. F. Semmelweis, průkopník dezinfekce chlórovou vodou před lékařským výkonem, prokázal nozokomiální původ horečky omladnic (puerperální sepse). Skutečný rozsah problému byl rozpoznán v 60. letech 20. stol., kdy se v nemocnicích rozšířily stafylokokové infekce.

Výskyt nozokomiálních infekcí lze jen zhruba odhadnout – uvádí se 5–10 %, ale závisí na řadě okolností: narůstá s dobou pobytu ve zdravotnickém zařízení a bývá zvláště vysoká na JIP a ARO (25 %). K dalším zařízením s častým výskytom nemocničních nákaz patří oddělení chirurgická, urologická, popáleninová, interní, porodní, nedonošenecká, novorozenecká a také psychiatrické léčebny. Infekční oddělení jsou díky přísnému hygienickému režimu z tohoto hlediska relativně bezpečná.
Etiologie: Hlavními původci nozokomiálních infekcí jsou grampozitivní koky, gramnegativní tyčinky i mykotické mikroorganismy. Typickou vlastností je vyselektovaná multirezistence k antibiotikům.

Podmínky vzniku: K vzniku nozokomiálních infekcí přispívají snížení odolnosti důsledkem základního onemocnění a jeho terapie (imunosuprese), zavlečení mikroorganismů při diagnostických a terapeutických výkonech, extrémě věku (novorozenci a staré osoby), délka hospitalizace (osídlení nemocniční mikroflórou), předchozí antibiotická léčba (narušuje složení přirozené mikroflóry), kontakt s pacienty a nedostatky v dodržení hygienického režimu a asepše.

Epidemiologie: Zdrojem exogenní infekce je nejčastěji ošetřující personál nebo jiný pacient, výjimečně návštěva. U endogenní infekce je zdrojem samý pacient. Primárně endogenní infekce je vyvolána mikroorganismy osídlené člověka a uplatňující se v důsledku základního onemocnění nebo diagnostických či terapeutických výkonů, sekundárně endogenní infekce vzniká propagací mikrobů, kterými byl pacient kolonizován až v nemocnici.

Cesty přenosu: Nozokomiální infekce se přenáší inhalací, ingescí a inokulací. Řada materiálů používaných v intenzivní péči může být sama o sobě vehikulem infekce, např. kontaminovaný infuzní roztok nebo voda ve zvlhčovači dýchacího přístroje.

Klinické obrazy: Nozokomiální infekce postihují

1. uropeptický trakt (infekce močových cest)
2. chirurgické rány (infekce v místě operačního výkonu)
3. dýchací cesty a plíce (pneumonie)
4. kůži a tkáně v okolí zavedených jehel a kanyl (flebitida, flegmóna, absces)
5. krevní oběh (bakterémie, fungémie, katétrová sepsis)
6. trávicí trakt (alimentární nákazy: rotavírová gastroenteritida, klostridiová kolitida).

Příznaky: Za nozokomiální infekce se považují infekce, jejichž příznaky se objeví až za více než 48–72 hodin po přijetí na oddělení.

Diagnóza: Záchyt původce má rozhodující význam.

Terapie: Racionální terapie vychází z citlivosti vykultivovaných mikrobů a ze znalosti citlivosti izolátů na příslušném oddělení. Blížší informace o problémových mikroorganismech jsou v kapitole Rezistence k antibiotikům.

Prevence: Základními prvky účinné prevence nozokomiálních infekcí jsou:
1. stavební uspořádání – umožňující izolaci pacientů, racionální odstraňování odpadů
2. organizace ošetřovatelské péče – omezující přecházení od pacienta k pacientovi, souvisící s dostatečným počtem personálně
3. správná technika ošetřování – používání ochranných pomůcek, uzavřených systémů pro odsávání a shromažďování tělích tekutin a sekretů, mytí rukou, likvidace odpad
4. správná technika ošetřování – používání jednorázových pomůcek, dezinfekce prostor, pravidelná a častá vyměna kanyl, katétrů, okruhů ventilátoru apod., častý úklid, péče o osobní hygienu.

Profylaxe: Při výskytu nozokomiální infekce
- se pacient izoluje
- ošetřuje vyčleněným personálem
- zpřísňují se ošetřovatelské techniky
– důsledně se musí dodržovat hygienické zásady.

Opatření při výskytu: Nemocniční nákazy se hlásí hygienické službě, resp. ústavnímu hygienikovi.

Kontrolní otázky

Ze kterých článků se skládá proces šíření nákazy?
Jaké jsou možné cesty přenosu infekce?
Co jsou nozokomiální nákazy?
Jaký je výskyt nozokomiálních infekcí v lůžkových zařízeních?
Které jsou rizikové okolnosti vzniku nozokomiální infekce?
Která infekční onemocnění jsou často nemocničního původu?
V čem spočívá prevence a profylaxe nozokomiálních infekcí?
PATOGENEZE INFEKČNÍCH NEMOCÍ
A INFEKČNÍ IMUNOLOGIE

Jen některé z mikroorganismů jsou patogenní (zkráceně patogeny), a tedy schopny proniknout do makroorganismu a vyvolat změny – infekci – a dokonce zjevné poškození – infekční nemoc. Infekce tedy neznamená za všech okolností nemoc. O tom, zda se projeví a v jaké míře, záleží na mnoha okolnostech, zejména na infekční dávce, virulenci mikroba a obranných a ochranných mechanismech hostitele. Před infekcí je organismus (pasivně) chráněn a (aktivně) bráněn
- fyziologickými ochrannými bariérami – vlastnostmi a funkcemi kůže a sliznic
- imunitní odpovědí a
- (v poslední linii) zánětem.

Od infekce může být obtížné odlišit kolonizaci, což je osídlení tělesných povrchů nebo ran infekčním agens, však nevyvolávající ani poškození, ani zánětlivou odpověď.

Vztah mezi mikroorganismem a hostitelem: Mezi bakteriemi i jinými mikroorganismy a hostitelem (makroorganismem) mohou nastat různé formy vztahů:
- a) symbióza (soužití), ze které mají obě strany prospěch,
- b) komenzalismus – bez většího prospěchu či vážnějšího poškození – a
- c) parazitismus (cizopasnictví), při kterém je hostitel poškozován.

Speciálním případem je saprofytismus, kdy se mikroorganismus živí látkami z odumřelých těl živočichů a rostlin. Z evolučního pohledu úspěšné druhy usilují o přežití, množení a zanechání potomstva, proto dobře adaptované mikroorganismy způsobují minimální škody a zachovávají hostitele v aktivním stavu pro další generace parazita. Určitý stupeň tkáňového poškození však může být nezbytný pro efektivní šíření do zevního prostředí – sekrety dýchacích cest, průjmem apod. Infekční nemoc je obecně výsledkem narušení rovnováhy mezi infekčním agens a hostitelem, kdy množství a virulence mikrobu zdolají ochranné a obranné mechanismy makroorganismu. Tato situace může vzniknout
- na jedné straně přílišným množstvím dostatečně virulentních mikrobů
- na druhé straně porušení fyziologických bariér a oslabení obranných mechanismů.

Reakce makroorganismu v nejlepším případě zajistí eliminaci mikroba, což vede k úzdravě, často i s úplnou odolností vůči reinfekci. V horším případě nastává rovnováha mezi mikrobiálními faktory a hostitelovou odpovědí, čímž vzniká perzistence mikroba a chronická infekce. V dalším životě pak může v důsledku oslabení obranných mechanismů různými vlivy (včetně imunosupresivních léčebných postupů) dojít k aktivaci infekce a vzniku onemocnění.
Patogenita čili schopnost vyvolat onemocnění je vlastnost celého druhu mikroorganismu, kterou umožňuje splnění čtyř podmínek: Mikrob musí

a) přežít na povrchových strukturách, vniknout do hostitele a případně penetrovat do tkání,
b) pomnožit se,
c) odolat obranným mechanismům hostitele nebo zabránit podnětům k obraně a

d) množením, produkci toxinů nebo navozením imunopatologických stavů poškodit hostitele.

V rámci bakteriálního i jiného mikrobiálního druhu se jednotlivé kmeny liší svou schopností vyvolat onemocnění – tzv. **virulenci**. Rozdíly jsou dány mnoha okolnostmi, mimo jiné i přítomností faktorů (determinant) virulence, což jsou určité rozpoznatelné struktury a vlastnosti mikroba.

KŮŽE A SLIZNICE

Intaktní kůže je pro většinu mikroorganismů neprostupná. Proniknutí mikrobů brání

– rohová vrstva tvořená buňkami s keratinem, které se neustále odlučují
– povrchový film z kožního mazu o slabě kyselém pH (4,5–5,5)
– přirozená kožní mikroflóra.

K narušení dochází nejspíše mechanickým poškozením a poraněním, k snížení odolnosti kůže přispívá ztráta její pružnosti a vláčnosti. Rozhodující cestou vniknutí infekce jsou invazivní zásahy, které prolamují integritu kůže (kanyly, katétry). Kůži pronikají bodací a savé ústní orgány krevsajících (hematofágních) členovců.

Sliznice jsou chráněny

– rychlým nahrazováním buněk (mikrobi nemají dost času k adherenci a množení)
– sekreci a omývání (hlenem, slinami, tekutinami v trávicím traktu, slzami, močí atd.)
– agresivně kyselým prostředím (v žaludku)
– mukociliárním transportem (v dýchacích cestách)
– protimikrobiálními působky v sekretech – např. lysozymem
– sekrečními imunoglobuliny třídy A (sIgA)
– vycestovanými buňkami imunitního systému
– přirozenou mikroflórou (nosohltanu, tlustého střeva, genitálního traktu) – která inhibuje růst patogenních bakterií a hub tím, že spotřebovává přirozené substráty a produkuje látky škodící patogenním mikrobům.

IMUNITNÍ SYSTÉM

Základní funkce: Základní funkci imunitního systému je rozlišení vlastních složek od cizorodých látek, mikroorganismů a abnormálních vlastních struktur, které by se mohly stát potenciálně škodlivé, a tato nebezpečí zneškodnit a eliminovat. Konečným cílem je zachování integrity organismu.

Složky imunitního systému: Imunitní systém je tvořen

– primárními lymfatickými orgány (kostrní dřeň a thymus)
– sekundárními lymfatickými orgány (lymfatické uzliny, slezina, slizniční imunitní systém, v menší míře i kůže)
rozptýlenými buňkami imunitního systému
molekulami v tělních tekutinách.
V primárních lymfatických orgánech buňky imunitního systému vznikají a diferencují se, v sekundárních lymfatických orgánech dochází k interakcím mezi buňkami imunitního systému a cizorodými podněty a imunokompetentní buňky se zde pomnožují a terminálně diferencují. Lymfatické orgány vzájemně propojují krevní a lymfatické cévy, prostřednictvím nich buňky migrují a jejich pomocí se dostávají do orgánů a tkání.

Hlavní větve imunitního systému: Imunitní systém je vybaven mechanismy přirozené (nespecifické) a získané (specifické, adaptivní) imunity.

1. **Přirozená (nespecifická) imunita** reaguje na přítomnost určitých povrchových a nitro-buněčných molekul patogenních mikroorganismů – signálů nebezpečí (alarminů) – nezávisle na jim předchozí expozici. Nástroji nespecifické imunity jsou
 - proteiny rozeznávající obecné mikrobiální struktury (sacharidy, lipopolysacharidy, peptidové fragmenty), zejména Toll-like receptory,
 - fagocytóza,
 - určité baktericidní látky, např. komplement,
 - protivirové proteiny, zejména interferony.

2. **Získaná (specifická) imunita** reaguje na přítomnost určitých polysacharidových a bílkovinných struktur (antigenů) stimulací určitého buněčného klonu, jeho proliferací a tvorbou protitukát nebo likvidací postižených buněk (cytotoxicitou). Mimoto vytváří paměťové buňky poskytující pozdější pohotovější odpověď.

Přirozená imunita představuje první protiinfekční linii, která je fylogeneticky starší a evolučně vysoce konzervována; získaná imunita je fylogeneticky mladší, je schopna vytvořit paměť a poskytnout pozdější pohotovější ochranu proti opakované infekci stejným pathogenem. Mechanismy přirozené a získané imunity jsou vzájemně prováděny a úzce spolupracují.

Vlastnosti: Imunitní systém je pro svou funkci vybaven jedinečnými vlastnostmi:
 - **rozptýlením** v těle – strategické rozmístění receptorů zajišťuje časný kontakt receptorů s cizorodou substancí či mikroorganismem
 - schopností **předávat informaci na dálku** – zejména biologicky aktivními látkami
 - schopností **zesílení signálu** – kaskádami, pomocí nichž i nepatrný podnět vyvede množství buněk z klidové fáze k efektorovým funkcím
 - **regulovatelností** – jež umožní zamezit destruktivním vlivů na organismus
 - **pamětí** – dovoluje pozdější pohotovější reakci na antigenní podnět a účinnější obranu proti opakované infekci.

ÚNIK MIKROBŮ OBRANNÝM MECHANISMŮM

Mikroorganismy, které vniknou do tkání, jsou většinou pohlceny a stráveny fagocytujícími buňkami. Přesto existuje řada bakterií, které úspěšně čelí fagocytóze (vyhnutím se pohlcení, přežitím ve fagocytes nebo zničením fagocytů). Některé bakterie se chrání před komplementem, jiné unikají před mechanismy získané (specifické) imunity.
ZÁNĚT

Klinické projevy zánětu zahrnují projevy na úrovni
(1) lokální (Celsovy znaky uvedené v historických názvech):
- bolest („dolor“)
- zčervenání („rubor“)
- otok („tumor“)
- zteplání („calor“)
- poruchu funkce („function laesa“)
(2) celkové (systémová zánětlivá odpověď, *systemic inflammatory response*, SIRS):
- horečku
- tachypnoi
- tachykardii.

Lokální a celkové příznaky jsou provázeny buněčnou odpovědí v krevním obrazu (hlavně leukocytózou, popř. leukopenií, posunem doleva), hormonální odpovědí (hl. produkce stresových hormonů) a změnou koncentrace reaktantů (vesměs bílkovin) akutní fáze zánětu (hlavně C reaktivního proteinu, CRP a prokalcitoninu, PCT).

V důsledku hypoperfuze tkání nastává porucha funkce orgánů – polyorgánová dysfunkce (*multiple organ dysfunction syndrome*, MODS) přerůstající až v polyorgánové selhání (*multiple organ failure syndrome*, MOFS). Postiženy jsou některé, popř. všechny uvedené orgány:
- plíce,
- ledviny,
- srdce,
- mozek,
- játra,
- střevo,
a mimoto dochází k poruše hemokoagulace (za vzniku diseminované intravaskulární koagulopatie, DIC), případně k selhání nadledvin.

Kontrolní otázky

- Objasněte základní pojmy v patogeneze infekcí: co je to patogenita, virulence, imunita, zánět!
- Které jsou hlavní složky imunitního systému?
- Jaký je vztah zánětu a infekce?
- Vyjmenujte pět lokálních projevů zánětu (tzv. Celsových znaků)?
- Vyjmenujte kritéria systémově zánětlivé odpovědi!
- Které orgány jsou postiženy při polyorgánovém selhání?
PŘÍZNAKY A PRŮBĚH INFEKČNÍCH NEMOCÍ

Infekční nemoc se projevuje
(1) subjektivními příznaky, které udává pacient,
(2) objektivními příznaky, které zjišťuje lékař při fyzikálním vyšetření, a
(3) laboratorními nálezy a výsledky pomocných vyšetření, které se stanovují laboratorními
a instrumentálními metodami.

U infekčních nemocí se příznaky rozvíjejí po uplynutí inkubační doby (časového úseku od
průniku infekčního agens do organismu do prvních klinických příznaků). Nejprve se objevují
necharacteristické projevy choroby – prodromy, později se dostaví příznaky plného rozvoje
nemoci. Některé příznaky jsou celkové a obecné (např. horečka nebo únava), jiné více či
méně svědčí pro postižení určitého systému, resp. orgánu (např. kašel nebo průjem). Některé
příznaky mohou být pro danou diagnózu dokonce velmi charakteristické až patognomické
(např. trismus u tetanu, tenesmus u dyzentérie, exantém u neštovic). O průběhu rozhoduje
řada okolností, v nejobecnější rovině poměr infekčního agens a obranných mechanismů or-
ganismu. Průběh infekce může být
a) bezpříznakový (asymptomatický) neboli inaparentní
b) lehký a krátký (abortivní, resp. frustní)
c) typický, většinou středně těžký
d) velmi těžký (perakutní, fulminantní, fudroyantní, maligní či [hyper]toxický).

Typický průběh infekčního onemocnění je známkou překonání bariér mikroorganismem,
dochází k celkovým příznakům a poruše funkce napadeného orgánu či orgánového systé-
u. V dalším vývoji pak obranné mechanismy makroorganismu infekci potlačí, intenzita
příznaků klesá (období rekonvalescence) a onemocnění většinou končí uzdravením. Většina
infekčních nemocí je samoúzdravných („self-limited disease“). V nejhorším případě dojde
dlouhého vzniku infekce a klinicky obtížné těžce; úzdrava vlastními silami je nepravděpo-
dobná, bez léčby onemocnění končí většinou smrtí. Relapse je nové vzplanutí (exacerbace)
průběh infekčního onemocnění nebo v časné rekonvalescenci, obvykle vyvolané
původním infekčním agens; recidiva je opakované onemocnění (nová ataka) po úzdravě,
spíše vyvolané odlišným kmenem (antigenní variantou) téhož druhu infekčního agens. Mi-
krob nemusí být z organismu obrannými mechanismy eliminován a přežívá (perzistuje) –
skrytě a bezpříznakově nebo s projevy chronického onemocnění. Chronickým průběhem se
označuje trvání nemoci delší než 6 týdnů, resp. 6 měsíců u chronické hepatitidy a 2 roky
u chronické bronchitidy.
Horečka je nejobecnějším, častým a pro infekci charakteristickým příznakem.

Definice: Gorečka (febris) je zvýšení tělesné teploty vyvolané řadou patogenních podnětů prostřednictvím termoregulačních mechanismů a je důležitým nespecifickým symptomem infekčních i jiných nemocí.

Patogeneze: Tělesná teplota je regulována termostatem v hypothalamu. Termoregulační centrum vyhodnocuje informace o teplotě protékající krve. Při nižší teplotě krve aktivuje mechnaymy zabrání tepelným ztrátám (periferní vazokonstrikce), popř. navozující zvýšenou produkci tepla (svalový třes). Při vyšší teplotě krve spustí reakce směřující k zvýšení tepelných ztrát (periferní vazodilatace, zvýšené pocení). Změna tělesné teploty souvisí s nastavením termoregulačního centra. Zvýšení úrovně nastavení vedoucí k vzniku horečky se dosahuje účinkem endogenních pyrogenů, které byly identifikovány jako cytokiny (např. TNF-α, IL-1 a IL-6). Tyto cytokiny se uvolňují z různých buněk a impulzem pro jejich výdej je zánět vyvolaný infekcí, ale i autoimunitní reakcí, nádorem, traumatem, účinkem toxinů či léků. Zvýšení tělesné teploty (hypertermie) se může dostatlost i selháním fyziologických regulačních mechanismů nebo porušeným odváděním tepla (úpal, úžeh).

Příznaky: Jako horečka se označuje zvýšení teploty nad 38,0 °C změřené axilárně, nad 38,2 °C změřené orálně nebo nad 38,5 °C změřené rektálně. Kůže je překrvená, na omak teplá. Teplota v rozmezí 37–38 °C se nazývá subfebrilní teplota a nad 40 °C hyperpyrexie. Horečku provází zvýšení tepové frekvence – obvykle o 10 pulsů na 1 ° zvýšení teploty. U některých onemocnění (např. břišního tyfu, neuroinfekcí s mozkovým edémem, ornitózy) může být při horečce normální nebo dokonce pomalejší srdeční akce (relativní i absolutní bradykardie).

Průběh a trvání: Podle výšky a rytmu teploty se rozlišují různé klinické typy horečky:

1. setrvalá horečka (febris continua) – o minimálním kolísání
2. střídavá čili septická horečka (febris intermittens seu septica) – kolísá od normálních do vysochých hodnot
3. rytmická horečka (febris rhytmica) – se pravidelně opakuje
4. opadávající čili skáčivá horečka (febris remittens) – kolísá, ale ne k normálním hodnotám
5. vlnivá horečka (febris undulans) – zvolna stoupající a pak klesající
6. návratná horečka (febris recurrens) – se střídáním horečnatých a afebrilních období
7. dvojvlnná horečka (febris biphasica) – s dvěma horečnatými obdobími oddělenými jedno- až několikadenálním afebrilním intervalem
8. subfebrilní teplota (subfebris) – zvýšení tělesné teploty do 38 °C
9. hyperpyrexie – zvýšení horečky nad 40 °C.

Průvodní příznaky a komplikace horečky: Prudké změny tělesné teploty vedou k zimnici = intenzivnímu pocitu chladu – a třesavce = rytmickým záskubům přičně pruhovaných svalů produkujícím teplo. Zchvácení (těžká únava s dušností) odráží zvýšení metabolického obratu (podobně jako u tělesné práce), tkáně přitom zvyšují své nároky na kyslík: musí se zvyšovat ventilace – klinicky tachypnoe – a navozuje se hyperkinetická cirkulace – tachykardie. Může dojít k poklesu krevního tlaku z periferní vazodilatace. Hypoxie v centrálním nervovém systému a produkce cytokínů a další mechanismy vedou k různému stupni poruch vědomí – od spavosti k agitovanosti, neklidu a zmatenosti. Horečka vedle ke snížení prahu pro
křeče. U kojenců a batolat se při vzestupu horečky může dostavit záchvat křečí s poruchou vědomí – *febrilní křeče*. Neadekvátní reakce na infekci je hypotermie a bradykardie, jež zřejmě souvisí s funkčním postižením mozkového kmene. U dětí (vyjma novorozenců) vzniká horečka snáze.

KOMPLIKACE A NÁSLEDKY

NOSIČSTVÍ

Nosičství je specifickým výrazem přežívání (perzistence) infekčního agens v organismu po prodělané infekci – buď zcela latentně nebo s minimálními klinickými či laboratorními příznaky. Může být buď krátkodobé (rekonvalescentní), nebo dlouhodobé až celoživotní. Nebezpečí spočívá v možném poškození postiženého orgánu, reaktivaci infekce za vzniku klinického onemocnění a vylučování infekčního agens do prostředí. Specifický význam má nosičství:
- meningokoka (*Neisseria meningitidis*)
- lidského viru imunodeficience (HIV)
- viru hepatitidy B a C
- salmonel brůšního tyfu (*Salmonella enterica Typhi*) a paratyfů A, B a C (*Salmonella enterica Paratyphi A, B, C*)
- původce bacilární úplavice (*Shigella sp.*)
- korynebakteria záškrtu (*Corynebacterium diphtheriae*)
- mykobakteria tuberkulózy (*Mycobacterium tuberculosis*)
- původce syfilidy (*Treponema pallidum*)

Kontrolní otázky

Co je to horečka, jakým způsobem vzniká a co může přivodit?
Uveďte příklady charakteristického průběhu horečky (teplotní křivky)!
Nosičství kterých patogenů má epidemiický význam?